Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Judd, W.S.; Manchester, S.R. Circumscription of Malvaceae (Malvales) as Determined by a Preliminary Cladistic Analysis of Morphological, Anatomical, Palynological, and Chemical Characters. Brittonia 1997, 49, 384–405. [Google Scholar] [CrossRef]
- Alverson, W.S.; Karol, K.G.; Baum, D.A.; Chase, M.W.; Swensen, S.M.; McCourt, R.; Sytsma, K.J. Circumscription of the Malvales and Relationships to Other Rosidae: Evidence from RbcL Sequence Data. Am. J. Bot. 1998, 85, 876–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edlin, H.L. A Critical Revision of Certain Taxonomic Groups of the Malvales. New Phytol. 1935, 34, 1–20. [Google Scholar] [CrossRef]
- Kearney, T.H. The American Genera of Malvaceae. Am. Midl. Nat. 1951, 46, 93–131. [Google Scholar] [CrossRef]
- Bates, D.M. Generic Relationships in the Malvaceae, Tribe Malvaea. Gentes Herbarum 1968, 10, 117–135. [Google Scholar]
- Fryxell, P.A. A Redefinition of the Tribe Gossypieae. Bot. Gaz. 1968, 129, 296–308. [Google Scholar] [CrossRef]
- La Duke, J.C.; Doebley, J. A Chloroplast DNA Based Phylogeny of the Malvaceae. Syst. Bot. 1995, 20, 259–271. [Google Scholar] [CrossRef]
- Tate, J.A.; Fuertes Aguilar, J.; Wagstaff, S.J.; La Duke, J.C.; Bodo Slotta, T.A.; Simpson, B.B. Phylogenetic Relationships within the Tribe Malveae (Malvaceae, Subfamily Malvoideae) as Inferred from ITS Sequence Data. Am. J. Bot. 2005, 92, 584–602. [Google Scholar] [CrossRef] [Green Version]
- Alverson, W.S.; Whitlock, B.A.; Nyffeler, R.; Bayer, C.; Baum, D.A. Phylogeny of the Core Malvales: Evidence from NdhF Sequence Data. Am. J. Bot. 1999, 86, 1474–1486. [Google Scholar] [CrossRef]
- Pfeil, B.; Brubaker, C.L.; Craven, L.A.; Crisp, M. Phylogeny of Hibiscus and the Tribe Hibisceae (Malvaceae) Using Chloroplast DNA Sequences of NdhF and the Rpl16 Intron. Syst. Bot. 2002, 27, 333–350. [Google Scholar]
- Nyffeler, R.; Bayer, C.; Alverson, W.S.; Yen, A.; Whitlock, B.A.; Chase, M.W.; Baum, D.A. Phylogenetic Analysis of the Malvadendrina Clade (Malvaceae Sl) Based on Plastid DNA Sequences. Org. Divers. Evol. 2005, 5, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Pfeil, B.; Crisp, M. What to Do with Hibiscus? A Proposed Nomenclatural Resolution for a Large and Well Known Genus of Malvaceae and Comments on Paraphyly. Aust. Syst. Bot. 2005, 18, 49–60. [Google Scholar] [CrossRef]
- Fryxell, P.A.; Hashmi, S.H. The Segregation of Radyera from Hibiscus (Malvaceae). Bot. Gaz. 1971, 132, 57–62. [Google Scholar] [CrossRef]
- Fryxell, P.A. The American Genera of Malvaceae—II. Brittonia 1997, 49, 204–269. [Google Scholar] [CrossRef]
- Koopman, M.M.; Baum, D.A. Phylogeny and Biogeography of Tribe Hibisceae (Malvaceae) on Madagascar. Syst. Bot. 2008, 33, 364–374. [Google Scholar] [CrossRef]
- Werner, O.; Magdy, M.; Ros, R.M. Molecular Systematics of Abelmoschus (Malvaceae) and Genetic Diversity within the Cultivated Species of This Genus Based on Nuclear ITS and Chloroplast RpL16 Sequence Data. Genet. Resour. Crop Evol. 2016, 63, 429–445. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C.-T.; Yu, A. Infrageneric Phylogenetics Investigation of Chimonanthus Based on Electroactive Compound Profiles. Bioelectrochemistry 2020, 133, 107455. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Y.; Zhang, J.; Karimi-Maleh, H.; Xu, Y.; Zhou, Q.; Fu, L.; Wu, W. Characterization of the Electrochemical Profiles of Lycoris Seeds for Species Identification and Infrageneric Relationships. Anal. Lett. 2020, 53, 2517–2528. [Google Scholar] [CrossRef]
- Fan, B.; Wang, Q.; Wu, W.; Zhou, Q.; Li, D.; Xu, Z.; Fu, L.; Zhu, J.; Karimi-Maleh, H.; Lin, C.-T. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. Biosensors 2021, 11, 155. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Wang, A.; Zhang, P.; Ding, S.; Wu, W.; Zhou, Q.; Chen, F.; Zhao, S. Identification of Medicinal Herbs in Asteraceae and Polygonaceae Using an Electrochemical Fingerprint Recorded Using Screen-Printed Electrode. J. Herb. Med. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Wang, D.; Li, D.; Fu, L.; Zheng, Y.; Gu, Y.; Chen, F.; Zhao, S. Can Electrochemical Sensors Be Used for Identification and Phylogenetic Studies in Lamiaceae? Sensors 2021, 21, 8216. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Zheng, Y.; Zhang, P.; Fan, B.; Li, Y.; Fu, L. Identification of Species in Lycoris Spp. from Stigmatic Exudate Using Electrochemical Fingerprints. Int. J. Electrochem. Sci 2021, 16, 211041. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, D.; Li, X.; Wang, Z.; Zhou, Q.; Fu, L.; Yin, Y.; Creech, D. Biometric Identification of Taxodium Spp. and Their Hybrid Progenies by Electrochemical Fingerprints. Biosensors 2021, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, X.; Han, F.; Fu, L.; Sun, J. Identification of Foliage Plants Heuchera Based on Electrochemical Profile of Active Molecules. Int. J. Electrochem. Sci 2021, 16, 211136. [Google Scholar] [CrossRef]
- Wäldchen, J.; Mäder, P. Machine Learning for Image Based Species Identification. Methods Ecol. Evol. 2018, 9, 2216–2225. [Google Scholar] [CrossRef]
- Wäldchen, J.; Mäder, P. Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Arch. Comput. Methods Eng. 2018, 25, 507–543. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.A.; Tieszen, K.L.; Hollis, S.; Dornan, T.L.; New, J.P. Evaluation of an Electrochemical Sensor for Measuring Blood Ketones. Diabetes Care 2000, 23, 500–503. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.T.; Lam, Y.C.; Hammes-Schiffer, S.; Choi, K.-S. Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547. [Google Scholar] [CrossRef]
- Egawa, Y.; Seki, T.; Takahashi, S.; Anzai, J. Electrochemical and Optical Sugar Sensors Based on Phenylboronic Acid and Its Derivatives. Mater. Sci. Eng. C 2011, 31, 1257–1264. [Google Scholar] [CrossRef]
- Saddhe, A.A.; Manuka, R.; Penna, S. Plant Sugars: Homeostasis and Transport under Abiotic Stress in Plants. Physiol. Plant. 2021, 171, 739–755. [Google Scholar] [CrossRef]
- Savych, A.; Basaraba, R.; Muzyka, N.; Ilashchuk, P. Analysis of Fatty Acid Composition Content in the Plant Components of Antidiabetic Herbal Mixture by GC-MS. Pharmacia 2021, 68, 433–439. [Google Scholar] [CrossRef]
- Tavan, M.; Azizi, A.; Sarikhani, H.; Mirjalili, M.H.; Rigano, M.M. Induced Polyploidy and Broad Variation in Phytochemical Traits and Altered Gene Expression in Salvia Multicaulis. Sci. Hortic. 2022, 291, 110592. [Google Scholar] [CrossRef]
- Araya, N.A.; Chiloane, T.S.; Rakuambo, J.Z.; Maboko, M.M.; du Plooy, C.P.; Amoo, S.O. Effect of Environmental Variability on Fruit Quality and Phytochemical Content of Soilless Grown Tomato Cultivars in a Non-Temperature-Controlled High Tunnel. Sci. Hortic. 2021, 288, 110378. [Google Scholar] [CrossRef]
- Defossez, E.; Pitteloud, C.; Descombes, P.; Glauser, G.; Allard, P.-M.; Walker, T.W.; Fernandez-Conradi, P.; Wolfender, J.-L.; Pellissier, L.; Rasmann, S. Spatial and Evolutionary Predictability of Phytochemical Diversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2013344118. [Google Scholar] [CrossRef]
- Yao, P.; Gao, Y.; Simal-Gandara, J.; Farag, M.A.; Chen, W.; Yao, D.; Delmas, D.; Chen, Z.; Liu, K.; Hu, H. Litchi (Litchi Chinensis Sonn.): A Comprehensive Review of Phytochemistry, Medicinal Properties, and Product Development. Food Funct. 2021, 12, 9527–9548. [Google Scholar] [CrossRef]
- Amiri-Aref, M.; Raoof, J.B.; Ojani, R. A Highly Sensitive Electrochemical Sensor for Simultaneous Voltammetric Determination of Noradrenaline, Acetaminophen, Xanthine and Caffeine Based on a Flavonoid Nanostructured Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2014, 192, 634–641. [Google Scholar] [CrossRef]
- Hendrickson, H.P.; Kaufman, A.D.; Lunte, C.E. Electrochemistry of Catechol-Containing Flavonoids. J. Pharm. Biomed. Anal. 1994, 12, 325–334. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y. Poly (Acid Chrome Blue K) Modified Glassy Carbon Electrode for the Determination of Vanillin. Int. J. Electrochem. Sci. 2012, 7, 6396–6405. [Google Scholar]
- Fu, L.; Xie, K.; Wu, D.; Wang, A.; Zhang, H.; Ji, Z. Electrochemical Determination of Vanillin in Food Samples by Using Pyrolyzed Graphitic Carbon Nitride. Mater. Chem. Phys. 2020, 242, 122462. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, B.; Zhang, M.; Du, X.; Wu, W.; Fu, L.; Zhou, Q.; Zheng, Y. Electrochemical Profile Recording for Pueraria Variety Identification. Anal. Sci. 2020, 36, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Perez da Graça, J.; Porto, C.; Martin do Prado, R.; Nunes, E.; Corrêa Marcelino-Guimarães, F.; Conrado Meyer, M.; Jorge Pilau, E. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora Pachyrhizi Infection. Metabolites 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, M.; Sumbwanyambe, M. An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application. AgriEngineering 2019, 1, 205–219. [Google Scholar] [CrossRef]
- Nasution, A.K.; Wijaya, S.H.; Gao, P.; Islam, R.M.; Huang, M.; Ono, N.; Kanaya, S.; Altaf-Ul-Amin, M. Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier. Antibiotics 2022, 11, 1199. [Google Scholar] [CrossRef]
- Ali, M.; Shiaeles, S.; Bendiab, G.; Ghita, B. MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System. Electronics 2020, 9, 1777. [Google Scholar] [CrossRef]
- Li, J.; Ye, G.; Liu, H.; Wang, Z. Complete Chloroplast Genomes of Three Important Species, Abelmoschus Moschatus, A. Manihot and A. Sagittifolius: Genome Structures, Mutational Hotspots, Comparative and Phylogenetic Analysis in Malvaceae. PLoS ONE 2020, 15, e0242591. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, M.; Li, Y.; Wang, X. Phylogenetic Analysis of Hibiscus Based on Morphological Characters. J. Henan Agric. Sci. 2014, 43, 105–111. [Google Scholar]
Algorithm of Classification | Data Treatment | ABS | PBS | ABS + PBS | |||
---|---|---|---|---|---|---|---|
Training Set | Prediction Set | Training Set | Prediction Set | Training Set | Prediction Set | ||
PLS-DA | N/A | 92.40 | 88.05 | 88.01 | 85.20 | 90.54 | 88.15 |
Second derivative | 95.51 | 93.63 | 96.57 | 91.70 | 98.51 | 96.42 | |
LinearSVC | N/A | 93.20 | 91.24 | 91.27 | 89.80 | 92.24 | 91.52 |
Second derivative | 97.22 | 95.41 | 98.20 | 95.42 | 99.52 | 97.63 | |
RF | N/A | 100.00 | 76.52 | 100.00 | 77.75 | 100.00 | 81.25 |
Second derivative | 100.00 | 81.71 | 100.00 | 79.62 | 100.00 | 85.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ye, W.; Li, D.; Zhu, J.; Liu, C.; Lin, C.; Fu, L.; Xu, Z. Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification. Micromachines 2023, 14, 248. https://doi.org/10.3390/mi14020248
Wang Q, Ye W, Li D, Zhu J, Liu C, Lin C, Fu L, Xu Z. Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification. Micromachines. 2023; 14(2):248. https://doi.org/10.3390/mi14020248
Chicago/Turabian StyleWang, Qiong, Weiting Ye, Dongling Li, Jiangwei Zhu, Chenghang Liu, Chengte Lin, Li Fu, and Zenglai Xu. 2023. "Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification" Micromachines 14, no. 2: 248. https://doi.org/10.3390/mi14020248
APA StyleWang, Q., Ye, W., Li, D., Zhu, J., Liu, C., Lin, C., Fu, L., & Xu, Z. (2023). Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification. Micromachines, 14(2), 248. https://doi.org/10.3390/mi14020248