Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier
Abstract
:1. Introduction
2. Device Technology
3. DC and RF Characterization
4. Large Signal Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/Mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron. Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Moon, J.S.; Wong, D.M.; Hu, P.; Hashimoto, M.; Antcliffe, C.; McGuire, M.M.; Willadson, P. 55% PAE and High Power Ka-Band GaN HEMTs Source Contact Ledge. EDL IEEE 2008, 29, 834–837. [Google Scholar] [CrossRef]
- Crespo, A.; Bellot, M.M.; Chabak, K.D.; Gillespie, J.K.; Jessen, G.H.; Miller, V.; Trejo, M.; Via, G.D.; Walker, D.E.; Winningham, B.W. High-Power Ka-Band Performance of AlInN/GaN. EDL IEEE 2010, 31, 8–10. [Google Scholar] [CrossRef]
- Moon, J.S.; Wu, S.; Wong, D.; Milosavljevic, I.; Conway, A.; Hashimoto, P.; Hu, M.; Antcliffe, M.; Micovic, M. Gate-Recessed AlGaN—GaN HEMTs for High-Performance Millimeter-Wave Applications. IEEE Electron. Device Lett. 2005, 26, 348–350. [Google Scholar] [CrossRef]
- Palacios, T.; Chakraborty, A.; Rajan, S.; Poblenz, C.; Keller, S.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. High-Power AlGaN/GaN HEMTs For. IEEE Electron. Device Lett. 2005, 26, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Bouslama, M.; Gillet, V.; Chang, C.; Nallatamby, J.C.; Sommet, R.; Prigent, M.; Quere, R.; Lambert, B. Dynamic Performance and Characterization of Traps Using Different Measurements Techniques for the New AlGaN/GaN HEMT of 0.15- Μm Ultrashort Gate Length. IEEE Trans. Microw. Theory Tech. 2019, 67, 2475–2482. [Google Scholar] [CrossRef]
- Wu, Y.; Saxler, A.; Moore, M.; Smith, R.P.; Sheppard, S.; Chavarkar, P.M.; Wisleder, T.; Mishra, U.K.; Parikh, P. 30-W/mm GaN HEMTs by Field Plate Optimization. IEEE Electron. Device Lett. 2004, 25, 117–119. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-F.; Moore, M.; Saxler, A.; Wisleder, T.; Parikh, P. 40-W/mm Double Field-Plated GaN HEMTs. 64th Device Res. Conf. Conf. Dig. DRC 2006, 151–152. [Google Scholar]
- Sun, Y.; Zhang, H.; Yang, L.; Hu, K.; Xing, Z.; Liang, K.; Yu, H.; Fang, S.; Kang, Y.; Wang, D.; et al. Correlation Between Electrical Performance and Gate Width of GaN-Based HEMTs. IEEE Electron. Device Lett. 2022, 1199, 1202. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Brown, D.F.; Corrion, A.L.; Moyer, H.P.; Burnham, S.; Regan, D.C.; Grabar, R.M. GaN Technology for E, W and G-Band Applications. IEEE Compd. Semicond. Integr. Circuit Symp. 2014, 1–4. [Google Scholar] [CrossRef]
- Schwantuschke, D.; Godejohann, B.J.; Brückner, P.; Tessmann, A.; Quay, R. mm-Wave Operation of AlN/GaN-Devices and MMICs at V- & W-Band. IEEE Int. Microw. Radar Conf. 2018, 238–241. [Google Scholar] [CrossRef]
- Kohn, E.; Medjdoub, F. InAlN—A New Barrier Material for GaN-Based HEMTs. In Proceedings of the International Workshop on The Physics of Semiconductor Devices, New Delhi, Indian, 17–20 December 2007; Volume 6, pp. 311–316. [Google Scholar] [CrossRef]
- Kabouche, R.; Derluyn, J.; Pusche, R.; Degroote, S.; Germain, M.; Pecheux, R.; Okada, E.; Zegaoui, M.; Medjdoub, F. Comparison of C-Doped AlN/GaN HEMTs and AlN/GaN/AlGaN Double Heterostructure for MmW Applications. In Proceedings of the 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 5–8. [Google Scholar] [CrossRef]
- Godejohann, B.J.; Ture, E.; Müller, S.; Prescher, M.; Kirste, L.; Aidam, R.; Polyakov, V.; Brückner, P.; Breuer, S.; Köhler, K. AlN/GaN HEMTs Grown by MBE and MOCVD: Impact of Al Distribution. Phys. Status Solidi Basic Res. 2017, 254, 3–7. [Google Scholar] [CrossRef]
- Dogmus, E.; Kabouche, R.; Linge, A.; Okada, E.; Zegaoui, M.; Medjdoub, F. High Power, High PAE Q-Band Sub-10 nm Barrier Thickness AlN/GaN HEMTs. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 797. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, K.; Corrion, A.; Regan, D.; Milosavljevic, I.; Brown, D.; Burnham, S.; Willadsen, P.J.; Butler, C.; Schmitz, A.; Wheeler, D. 220GHz f T and 400GHz f Max in 40-nm GaN DH-HEMTs with Re-Grown Ohmic. Int. Electron. Devices Meet. 2010, 30.1.1–30.1.4. [Google Scholar] [CrossRef]
- Tang, Y.; Shinohara, K.; Regan, D.; Corrion, A.; Brown, D.; Wong, J.; Schmitz, A.; Fung, H.; Kim, S.; Micovic, M. Ultrahigh-Speed GaN High-Electron-Mobility Transistors with FT/Fmax of 454/444 GHz. IEEE Electron. Device Lett. 2015, 36, 549–551. [Google Scholar] [CrossRef]
- Cwiklinski, M.; Bruckner, P.; Leone, S.; Friesicke, C.; Lozar, R.; Mabler, H.; Quay, R.; Ambacher, O. 190-GHz G-Band GaN Amplifier MMICs with 40GHz of Bandwidth. IEEE MTT-S Int. Microw. Symp. Dig. 2019, 2019, 1257–1260. [Google Scholar] [CrossRef]
- Medjdoub, F.; Zegaoui, M.; Linge, A.; Grimbert, B.; Silvestri, R.; Meneghini, M.; Meneghesso, G.; Zanoni, E. High PAE High Reliability AlN/GaN Double Heterostructure. Solid State Electron. 2015, 113, 49–53. [Google Scholar] [CrossRef]
- Medjdoub, F.; Zegaoui, M.; Rolland, N. Beyond 100GHz AlN/GaN HEMTs on Silicon Substrate. Electron. Lett. 2011, 47, 1345–1346. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Santarelli, A.; Corrado, F. Experimental Characterization of Charge Trapping Dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by Wideband Transient Measurements. IEEE Transac. Electron. Devices 2020, 67, 3069–3074. [Google Scholar] [CrossRef]
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Performance and Highly Robust AlN/GaN HEMTs for Millimeter-Wave Operation. IEEE J. Electron. Devices Soc. 2019, 7, 314. [Google Scholar] [CrossRef]
- Gao, Z.H.; Meneghini, M.; Harrouche, K.; Kabouche, R.; Chiocchetta, F.; Okada, E.; Rampazzo, F.; De Santi, C.; Medjdoub, F.; Meneghesso, G. Short Term Reliability and Robustness of Ultra-Thin Barrier, 110 nm-Gate AlN/GaN HEMTs. Microelectron. Reliab. 2021, 123, 114199. [Google Scholar] [CrossRef]
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Power AlN/GaN HEMTs with Record Power-Added-Efficiency >70% at 40 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020. [Google Scholar]
- Shinohara, K.D.; Regan, I.; Milosavljevic, A.; Corrion, L.D.; Brown, F.P.; Willadsen, J.C.; Butler, A.; Schmitz, S.; Kim, V.; Lee, A.; et al. Electron Velocity Enhancement in Laterally Scaled GaN DH-HEMTs With fT of 260 GHz. IEEE Electron. Device Lett. 2011, 32, 1074–1076. [Google Scholar] [CrossRef]
- Micovic, M.; Hashimoto, P.; Hu, M.; Milosavljevic, I.; Duvall, J.; Peter, J.; Willadsen, W.-S.; Wong, A.; Conway, M.; Kurdoghlian, A.; et al. GaN Double Heterojunction Field Effect Transistor For Microwave and Millimeterwave Power Applications. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 807–810. [Google Scholar] [CrossRef]
- Moon, J.S.; Grabar, R.; Wong, J.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A.; Chappell, J. High-speed Graded-channel AlGaN GaN HEMTs with Power Added Efficiency 70% at 30 GHz. Electron. Lett. 2020, 56, 678–680. [Google Scholar] [CrossRef]
- Moon, J.; Wong, J.; Grabar, B.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A. High-Speed Linear GaN Technology with a Record Efficiency in Ka-Band. In Proceedings of the EUMW Conference, Paris, France, 30 September–4 October 2019. [Google Scholar]
- Romanczyk, B.; Guidry, M.; Zheng, X.; Shrestha, P.; Li, H.; Ahmadi, E.; Keller, S.; Mishra, U.K. Evaluation of Linearity at 30 GHz for N-Polar GaN Deep Recess Transistors with 10.3 W/Mm of Output Power and 47.4% PAE. Appl. Phys. Lett. 2021, 119, 587. [Google Scholar] [CrossRef]
- Liu, W.; Romanczyk, B.; Guidry, M.; Hatui, N.; Wurm, C.; Li, W.; Shrestha, P.; Zheng, X.; Keller, S.; Mishra, U.K. 6.2 W/Mm and Record 33.8% PAE at 94 GHz from N-Polar GaN Deep Recess MIS-HEMTs with ALD Ru Gates. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 748–751. [Google Scholar] [CrossRef]
- Wienecke, S.; Romanczyk, B.; Guidry, M.; Li, H.; Ahmadi, E.; Hestroffer, K.; Zheng, X.; Keller, S.; Mishra, U.K. N-Polar GaN Cap MISHEMT With Record Power Density Exceeding 6.5 W/mm at 94 GHz. IEEE Electron. Device Lett. 2017, 38, 359–362. [Google Scholar] [CrossRef]
- Harrouche, K.; Venkatachalam, S.; Grandpierron, F.; Okada, E.; Medjdoub, F. Impact of Undoped Channel Thickness and Carbon Concentration on AlN/GaN-on-SiC HEMT Performances. Appl. Phys. Express 2022, 15, 116504. [Google Scholar] [CrossRef]
- Medjdoub, F.; Ducatteau, D.; Zegaoui, M.; Grimbert, B.; Rolland, N.; Rolland, P.A. Trapping Effects Dependence on Electron Confinement in Ultrashort GaN-on-Si High-Electron-Mobility Transistors. Appl. Phys. Express 2012, 5, 5–7. [Google Scholar] [CrossRef]
- Kabouche, R.; Okada, E.; Dogmus, E.; Linge, A.; Zegaoui, M.; Medjdoub, F. Power Measurement Setup for On-Wafer Large Signal Characterization Up to Q-Band. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 419–421. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrouche, K.; Venkatachalam, S.; Ben-Hammou, L.; Grandpierron, F.; Okada, E.; Medjdoub, F. Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines 2023, 14, 291. https://doi.org/10.3390/mi14020291
Harrouche K, Venkatachalam S, Ben-Hammou L, Grandpierron F, Okada E, Medjdoub F. Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines. 2023; 14(2):291. https://doi.org/10.3390/mi14020291
Chicago/Turabian StyleHarrouche, Kathia, Srisaran Venkatachalam, Lyes Ben-Hammou, François Grandpierron, Etienne Okada, and Farid Medjdoub. 2023. "Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier" Micromachines 14, no. 2: 291. https://doi.org/10.3390/mi14020291
APA StyleHarrouche, K., Venkatachalam, S., Ben-Hammou, L., Grandpierron, F., Okada, E., & Medjdoub, F. (2023). Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines, 14(2), 291. https://doi.org/10.3390/mi14020291