Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems
Abstract
:1. Introduction
2. Theoretical Background
3. Design of Microfluidic Devices
Regular Grid and Real Rock Image
4. Device Fabrication
- Glass–chrome masks for each pattern are prepared via laser writing. The chrome–glass mask blanks are purchased by MB Whitaker & Associates. A LaserWriter system by MICROTECH is used to transfer the desired pattern onto the blanks and create the final mask. The masks undergo a process of resist development, chrome etching and piranha cleaning to be ready to use. Optical inspection is performed to guarantee that the final mask has no dimensional mismatch with respect to the designed geometry.
- Su-8 2050 is used as a photoresist for the fabrication of the master molds. The Su-8 2050 belongs to a series of negative photoresists. The resist is spin-coated on a silicon wafer and soft-baked. The sample is then loaded inside a Mask Aligner and exposed to the UV-light beam. A post-exposure bake follows, and the resist is then developed with appropriate solvents to remove the undesired material and keep the microfluidic pattern mold only. A final hard bake is added to ensure that SU-8 properties do not change in actual use (Su-8 2000 Processing guidelines). All baking steps are necessary to optimally cure the photoresist and process the structures. A level hotplate with good thermal control and uniformity is required. Two steps at 65 °C and 95 °C are performed during soft bake and post-exposure bake. The hard bake reaches 150 °C.
- The sample undergoes wet silanization after the hard bake. This treatment makes the silicon surface more hydrophobic, which means that PDMS will have less affinity to it and will be easier to detach. Toluene and Trichloromethylsilane (10.1 ratio) are used for the silanization bath.
- PDMS Sylgard 184 is used for the microfluidic replica. A mixture of the prepolymer and the curing agent in a 10:1 ratio is poured on the master mold after degassing and let cure.
- The replica is then peeled off the mold. The inlet and the outlet holes are drilled with a puncher, to achieve a hole diameter of 1 mm.
- To seal the device, both the PDMS replica and the glass slides are exposed to an oxygen plasma surface treatment before being permanently bonded together by the application of a gentle pressure. Oxygen plasma treatment guarantees irreversible bonding and good sealing resistance even after multiple cycles of experiments [21].
Experimental Set-Up and Fluid-Flow Tests
5. Results and Discussion
5.1. Discussion on Dimensionless Numbers and Flow Conditions
5.2. Discussion on Observed Pore-Scale Phenomena
5.3. Discussion on Methodologies and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benetatos, C.; Bocchini, S.; Carpignano, A.; Chiodoni, A.; Cocuzza, M.; Deangeli, C.; Ferrero, D.; Gerboni, R.; Giglio, G.; Lamberti, A.; et al. How underground systems can contribute to meet the challenges of energy transition. GEAM 2021, 58, 65–80. [Google Scholar]
- Global CCS Institute. 2022 Status Report. Available online: https://status22.globalccsinstitute.com/ (accessed on 1 January 2020).
- Bocchini, S.; Castro, C.; Cocuzza, M.; Ferrero, S.; Latini, G.; Martis, A.; Pirri, F.; Scaltrito, L.; Rocca, V.; Verga, F.; et al. The Virtuous CO2 Circle or the Three Cs: Capture, Cache and Convert. J. Nanomater. 2017, 2017, 6594151. [Google Scholar] [CrossRef] [Green Version]
- Alcalde, J.; Flude, S.; Wilkinson, M.; Johnson, G.; Edlmann, K.; Bond, C.E.; Scott, V.; Gilfillan, S.M.V.; Ogaya, X.; Haszeldine, R.S. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 2018, 9, 2201. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy Environ. Sci. R. Soc. Chem. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrog. Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Haddad, P.G.; Ranchou-Peyruse, M.; Guignard, M.; Mura, J.; Casteran, F.; Ronjon-Magand, L.; Senechal, P.; Isaure, M.-P.; Moonen, P.; Hoareau, G.; et al. Geological storage of hydrogen in deep aquifers–an experimental multidisciplinary study. Energy Environ. Sci. 2022, 15, 3400–3415. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Valocchi, A.J.; Christensen, K.T. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 2018, 212, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Salina Borello, E.; Peter, C.; Panini, F.; Viberti, D. Application of A∗ algorithm for microstructure and transport properties characterization from 3D rock images. Energy 2022, 239, 122151. [Google Scholar] [CrossRef]
- Blunt, M.J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Hassanizadeh, S.M. Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1895–1976. [Google Scholar] [CrossRef]
- Konangi, S.; Palakurthi, N.K.; Karadimitriou, N.K.; Comer, K.; Ghia, U. Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Adv. Water Resour. 2021, 147, 103792. [Google Scholar] [CrossRef]
- Qin, C.Z.; van Brummelen, H. A dynamic pore-network model for spontaneous imbibition in porous media. Adv. Water Resour. 2019, 133, 103420. [Google Scholar] [CrossRef]
- Ferrari, A. Pore-scale modeling of two-phase flow instabilities in porous media. Ph.D. Thesis, Université de Lausanne, Lausanne, Switzerland, 2014. [Google Scholar]
- Zuo, L.; Zhang, C.; Falta, R.W.; Benson, S.M. Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Resour. 2013, 53, 188–197. [Google Scholar] [CrossRef]
- Viberti, D.; Peter, C.; Salina Borello, E.; Panini, F. Pore structure characterization through path-finding and lattice Boltzmann simulation. Adv. Water Resour. 2020, 141, 103609. [Google Scholar] [CrossRef]
- Panini, F.; Salina Borello, E.; Peter, C.; Viberti, D. Application of a* Algorithm for Tortuosity and Effective Porosity Estimation of 2D Rock Images. In International Summer School-Conference “Advanced Problems in Mechanics”; Springer: Cham, Germany, 2022; pp. 519–530. [Google Scholar]
- Quaglio, M.; Canavese, G.; Giuri, E.; Marasso, S.L.; Perrone, D.; Cocuzza, M.; Pirri, C.F. Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. J. Micromech. Microeng. 2008, 18, 055012. [Google Scholar] [CrossRef]
- Zhang, C.; Oostrom, M.; Wietsma, T.W.; Grate, J.W.; Warner, M.G. Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 2011, 25, 3493–3505. [Google Scholar] [CrossRef]
Name | Porosity 2D | Average Pore Size (µm) | Smallest Pore Size (µm) |
---|---|---|---|
GRID01 | 0.34 | - | 25 |
HO49Y | 0.32 | 96.52 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massimiani, A.; Panini, F.; Marasso, S.L.; Vasile, N.; Quaglio, M.; Coti, C.; Barbieri, D.; Verga, F.; Pirri, C.F.; Viberti, D. Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems. Micromachines 2023, 14, 308. https://doi.org/10.3390/mi14020308
Massimiani A, Panini F, Marasso SL, Vasile N, Quaglio M, Coti C, Barbieri D, Verga F, Pirri CF, Viberti D. Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems. Micromachines. 2023; 14(2):308. https://doi.org/10.3390/mi14020308
Chicago/Turabian StyleMassimiani, Alice, Filippo Panini, Simone Luigi Marasso, Nicolò Vasile, Marzia Quaglio, Christian Coti, Donatella Barbieri, Francesca Verga, Candido Fabrizio Pirri, and Dario Viberti. 2023. "Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems" Micromachines 14, no. 2: 308. https://doi.org/10.3390/mi14020308
APA StyleMassimiani, A., Panini, F., Marasso, S. L., Vasile, N., Quaglio, M., Coti, C., Barbieri, D., Verga, F., Pirri, C. F., & Viberti, D. (2023). Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems. Micromachines, 14(2), 308. https://doi.org/10.3390/mi14020308