Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors
Abstract
:1. Introduction
2. Heterojunction-Based HEMT as Biosensor
3. Electrolyte Gate HEMT
4. Extended Gate HEMT
5. Electric Double-Layers (EDL HEMT)
6. Gateless HEMT
7. Floating-Gate HEMT
8. Dual-Gate HEMT
9. Challenges and Opportunities of Heterojunction-Based HEMT
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, C.; Chen, P.; Pulikkathodi, A.K.; Hsiao, Y.; Chen, C.; Wang, Y. A Package Technology for Miniaturized Field-Effect Transistor-Based Biosensors and the Sensor Array. ECS J. Solid State Sci. Technol. 2017, 6, 63–67. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Huang, S.W.; Kuo, W.C.; Chen, P.H.; Wang, Y.L. Rapid Detection of NT-ProBNP from Whole Blood Using FET Based Biosensors for Homecare. Sens. Actuators B Chem. 2019, 285, 209–215. [Google Scholar] [CrossRef]
- Zhan, X.M.; Hao, M.L.; Wang, Q.; Li, W.; Xiao, H.L.; Feng, C.; Jiang, L.J.; Wang, C.M.; Wang, X.L.; Wang, Z.G. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors. Chin. Phys. Lett. 2017, 34, 047301. [Google Scholar] [CrossRef]
- Gudkov, A.G.; Agasieva, S.V.; Tikhomirov, V.G.; Zherdeva, V.V.; Klinov, D.V.; Shashurin, V.D. Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT. Biomed. Eng. 2019, 53, 196–200. [Google Scholar] [CrossRef]
- Parkhey, P.; Mohan, S.V. Biosensing Applications of Microbial Fuel Cell: Approach toward Miniaturization; Elsevier B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780444640529. [Google Scholar]
- Sawant, S.N. Development of Biosensors from Biopolymer Composites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780081009741. [Google Scholar]
- Fathil, M.F.M.; Md Arshad, M.K.; Ruslinda, A.R.; Gopinath, S.C.B.; Nuzaihan, M.M.N.; Adzhri, R.; Hashim, U.; Lam, H.Y. Substrate-Gate Coupling in ZnO-FET Biosensor for Cardiac Troponin I Detection. Sens. Actuators B Chem. 2017, 242, 1142–1154. [Google Scholar] [CrossRef]
- Huang, C.C.; Kuo, Y.H.; Chen, Y.S.; Huang, P.C.; Lee, G.B. A Miniaturized, DNA-FET Biosensor-Based Microfluidic System for Quantification of Two Breast Cancer Biomarkers. Microfluid. Nanofluid. 2021, 25, 33. [Google Scholar] [CrossRef]
- Luo, J.; Li, S.; Xu, M.; Guan, M.; Yang, M.; Ren, J.; Zhang, Y.; Zeng, Y. Real-Time Detection of Cardiac Troponin i and Mechanism Analysis of AlGaAs/GaAs High Electron Mobility Transistor Biosensor. AIP Adv. 2020, 10, 115205. [Google Scholar] [CrossRef]
- Chen, P.-C.; Chen, Y.-W.; Sarangadharan, I.; Hsu, C.-P.; Chen, C.-C.; Shiesh, S.-C.; Lee, G.-B.; Wang, Y.-L. Editors’ Choice—Field-Effect Transistor-Based Biosensors and a Portable Device for Personal Healthcare. ECS J. Solid State Sci. Technol. 2017, 6, Q71–Q76. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.; Choi, M.; Ku, B.; Lee, C.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.-H.; Lee, G.-Y.; Chyi, J.-I.; Lee, G.-B.; Wang, Y.-L. A Comprehensive Model for Whole Cell Sensing and Transmembrane Potential Measurement Using FET Biosensors. ECS J. Solid State Sci. Technol. 2018, 7, Q3001–Q3008. [Google Scholar] [CrossRef] [Green Version]
- Kao, W.C.; Chen, Y.W.; Chu, C.H.; Chang, W.H.; Shiesh, S.C.; Wang, Y.L.; Lee, G.B. Detection of C-Reactive Protein on an Integrated Microfluidic System by Utilizing Field-Effect Transistors and Aptamers. Biomicrofluidics 2017, 11, 044105. [Google Scholar] [CrossRef]
- Kim, H.I.; Yim, D.B.; Jeon, S.J.; Kang, T.W.; Hwang, I.J.; Lee, S.; Yang, J.K.; Ju, J.M.; So, Y.; Kim, J.H. Modulation of Oligonucleotide-Binding Dynamics on WS2 Nanosheet Interfaces for Detection of Alzheimer’s Disease Biomarkers. Biosens. Bioelectron. 2020, 165, 112401. [Google Scholar] [CrossRef]
- Masurkar, N.; Thangavel, N.K.; Yurgelevic, S.; Varma, S.; Auner, G.W.; Reddy Arava, L.M. Reliable and Highly Sensitive Biosensor from Suspended MoS2 Atomic Layer on Nano-Gap Electrodes. Biosens. Bioelectron. 2021, 172, 112724. [Google Scholar] [CrossRef] [PubMed]
- Kwong Hong Tsang, D.; Lieberthal, T.J.; Watts, C.; Dunlop, I.E.; Ramadan, S.; del Rio Hernandez, A.E.; Klein, N. Chemically Functionalised Graphene FET Biosensor for the Label-Free Sensing of Exosomes. Sci. Rep. 2019, 9, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Falina, S.; Syamsul, M.; Iyama, Y.; Hasegawa, M.; Koga, Y.; Kawarada, H. Carboxyl-Functionalized Graphene SGFET: PH Sensing Mechanism and Reliability of Anodization. Diam. Relat. Mater. 2019, 91, 15–21. [Google Scholar] [CrossRef]
- Falina, S.; Kawai, S.; Oi, N.; Yamano, H.; Kageura, T.; Suaebah, E.; Inaba, M.; Shintani, Y.; Syamsul, M.; Kawarada, H. Role of Carboxyl and Amine Termination on a Boron-Doped Diamond Solution Gate Field Effect Transistor (SGFET) for PH Sensing. Sensors 2018, 18, 2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.H.; Iyama, Y.; Tadenuma, K.; Kawaguchi, S.; Takarada, T.; Falina, S.; Syamsul, M.; Kawarada, H. Over 59 MV PH−1 Sensitivity with Fluorocarbon Thin Film via Fluorine Termination for PH Sensing Using Boron-Doped Diamond Solution-Gate Field-Effect Transistors. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2–7. [Google Scholar] [CrossRef]
- Saito, W.; Member, A.; Takada, Y.; Kuraguchi, M.; Tsuda, K. High Breakdown Voltage AlGaN–GaN Power-HEMT Design and High Current Density Switching Behavior. IEEE Trans. Electron Devices 2003, 50, 2528–2531. [Google Scholar] [CrossRef]
- Xing, H.; Dora, Y.; Chini, A.; Heikman, S.; Keller, S.; Mishra, U.K.; Al, A.H.; Gan, G.N. High Breakdown Voltage AlGaN–GaN HEMTs Achieved by Multiple Field Plates. IEEE Electron Device Lett. 2004, 25, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Nguyen, T.; Tanner, P.; Nguyen, T.; Foisal, A.R.; Fastier-Wooller, J.; Nguyen, T.; Phan, H.; Nguyen, N.; Dao, D.V. Piezotronic Effect in a Normally off P-GaN/AlGaN/GaN HEMT toward Highly Sensitive Pressure Sensor. Appl. Phys. Lett. 2021, 242104, 1–7. [Google Scholar] [CrossRef]
- Chung, G.H.; Vuong, T.A.; Kim, H. Results in Physics Demonstration of Hydrogen Sensing Operation of AlGaN/GaN HEMT Gas Sensors in Extreme Environment. Results Phys. 2019, 12, 83–84. [Google Scholar] [CrossRef]
- Radhakrishna, U.; Choi, P.; Grajal, J.; Peh, L.; Palacios, T.; Antoniadis, D. Study of RF-Circuit Linearity Performance of GaN HEMT Technology Using the MVSG Compact Device Model. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; Volume 3, pp. 75–78. [Google Scholar]
- Wang, Z.; Wang, S.; Zhang, Z.; Wang, C.; Yang, D.; Chen, X.; Wang, Z.; Cao, J.; Yao, Y. A High-Performance Tunable LED-Compatible Current Regulator Using an Integrated Voltage Nanosensor. IEEE Trans. Electron Devices 2019, 66, 1917–1923. [Google Scholar] [CrossRef]
- Wang, X.; Hu, G.; Ma, Z.; Ran, J.; Wang, C.; Xiao, H.; Tang, J.; Li, J.; Wang, J.; Zeng, Y.; et al. AlGaN/AlN/GaN/SiC HEMT Structure with High Mobility GaN Thin Layer as Channel Grown by MOCVD. J. Cryst. Growth 2007, 298, 835–839. [Google Scholar] [CrossRef]
- Chen, Y.; Sarangadharan, I.; Sukesan, R.; Hsei, C.; Lee, G.; Chyi, J.; Wang, Y. High-Field Modulated Ion-Selective Field-Effect-Transistor ( FET ) Sensors with Sensitivity Higher than the Ideal Nernst Sensitivity. Sci. Rep. 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Guan, M.; Cui, N.; Zhao, C.; Zhang, Y.; Zeng, Y.; Li, S. The GaAs/AlGaAs-Based Extended Gate HEMT Cardiac Troponin-I Biosensor: Design, Mechanism and Clinical Detection. IEEE Sens. J. 2021, 21, 18410–18416. [Google Scholar] [CrossRef]
- Podolska, A.; Tham, S.; Hart, R.D.; Seeber, R.M.; Kocan, M.; Mishra, U.K.; Pfleger, K.D.G.; Parish, G.; Nener, B.D. Biocompatibility of Semiconducting AlGaN/GaN Material With Living Cells. Sens. Actuators B Chem. 2012, 169, 401–406. [Google Scholar] [CrossRef]
- Azarifar, M.; Donmezer, N. Microelectronics Reliability A Multiscale Analytical Correction Technique for Two-Dimensional Thermal Models of AlGaN/GaN HEMTs. Microelectron. Reliab. 2017, 74, 82–87. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Nirmal, D.; Jarndal, A.; Huq, H.F.; Chander, S.; Bhagyalakshmi, S.; Reddy, P.K.; Ajayan, J.; Varghese, A. Applicability of Double Channel Technique in AlGaN/GaN HEMT for Future Biosensing Applications. Superlattices Microstruct. 2021, 160, 107086. [Google Scholar] [CrossRef]
- Kirste, R.; Rohrbaugh, N.; Bryan, I.; Bryan, Z.; Collazo, R.; Ivanisevic, A. Electronic Biosensors Based on III-Nitride Semiconductors. Annu. Rev. Anal. Chem. 2015, 8, 149–169. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Pulikkathodi, A.K.; Chu, C.; Chen, Y.; Regmi, A.; Chen, P.; Hsu, C.; Wang, Y. Review—High Field Modulated FET Biosensors for Biomedical Applications. ECS J. Solid State Sci. Technol. 2018, 7, 3032–3042. [Google Scholar] [CrossRef]
- Hemaja, V.; Panda, D.K. A Comprehensive Review on High Electron Mobility Transistor (HEMT) Based Biosensors: Recent Advances and Future Prospects and Its Comparison with Si-Based Biosensor. Silicon 2021, 14, 1873–1886. [Google Scholar] [CrossRef]
- Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.L.; Salvestrini, J.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kang, B.S.; Chancellor, T.F., Jr.; Lele, T.P.; Tseng, Y.; Ren, F.; Pearton, S.J.; Johnson, W.J.; Roberts, J.C.; Piner, E.L.; et al. Fast Electrical Detection of Hg(II) Ions with AlGaN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2007, 91, 042114. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Dhakad, S.K.; Periasamy, C.; Chaturvedi, N. Optimization of Ohmic Contacts on Thick and Thin AlGaN/GaN HEMTs Structures. Superlattices Microstruct. 2017, 111, 922–926. [Google Scholar] [CrossRef]
- Pal, P.; Pratap, Y.; Gupta, M.; Kabra, S. Open Gate AlGaN/GaN HEMT Biosensor: Sensitivity Analysis and Optimization. Superlattices Microstruct. 2021, 156, 106968. [Google Scholar] [CrossRef]
- Chaturvedi, N.; Mishra, S.; Dhakad, S.; Sharma, N.; Singh, K.; Chaturvedi, N.; Taliyan, R.; Chauhan, A.; Kharbanda, D.K. Development of GaN HEMTs Based Biosensor; Springer International Publishing: New York, NY, USA, 2017; ISBN 9783319976044. [Google Scholar]
- Song, Y.; Zhang, X.; Yan, X.; Liao, Q.; Wang, Z.; Zhang, Y. An Enzymatic Biosensor Based on Three-Dimensional ZnO Nanotetrapods Spatial Net Modified AlGaAs/GaAs High Electron Mobility Transistors. Appl. Phys. Lett. 2014, 105, 213703. [Google Scholar] [CrossRef]
- Ma, S.; Liao, Q.; Liu, H.; Song, Y.; Li, P.; Huang, Y.; Zhang, Y. An Excellent Enzymatic Lactic Acid Biosensor with ZnO Nanowires-Gated AlGaAs/GaAs High Electron Mobility Transistor. Nanoscale 2012, 4, 6415–6418. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, K.T.; Chattopadhyay, M.K. Materials Science & Engineering B Sensor Applications Based on AlGaN/GaN Heterostructures. Mater. Sci. Eng. B 2021, 263, 114849. [Google Scholar] [CrossRef]
- Kang, B.S.; Wang, H.T.; Ren, F.; Pearton, S.J. Electrical Detection of Biomaterials Using AlGaN/GaN High Electron Mobility Transistors. J. Appl. Phys. 2008, 104, 8. [Google Scholar] [CrossRef]
- Shur, M.S.; Gaska, R.; Bykhovski, A. GaN-Based Electronic Devices. Solid-State Electron. 1999, 43, 1451–1458. [Google Scholar] [CrossRef]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G. Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.; Sheng, K. The Safe Operating Area of AlGaN/GaN-Based Sensor. IEEE Sens. J. 2021, 21, 6241–6247. [Google Scholar] [CrossRef]
- Chander, S.; Gupta, S.; Ajay; Gupta, M. Enhancement of Breakdown Voltage in AlGaN/GaN HEMT Using Passivation Technique for Microwave Application. Superlattices Microstruct. 2018, 120, 217–222. [Google Scholar] [CrossRef]
- Sharma, N.; Periasamy, C.; Chaturvedi, N. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors. J. Nanosci. Nanotechnol. 2017, 18, 4580–4587. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, X.; Liao, Q.; Liu, H.; Huang, Y.; Song, Y.; Zhao, Y.; Zhang, Y. Enzymatic Lactic Acid Sensing by In-Doped ZnO Nanowires Functionalized AlGaAs/GaAs High Electron Mobility Transistor. Sens. Actuators B Chem. 2015, 212, 41–46. [Google Scholar] [CrossRef]
- Gu, L.; Yang, S.; Miao, B.; Gu, Z.; Wang, J.; Sun, W.; Wu, D.; Li, J. Electrical Detection of Trace Zinc Ions with an Extended Gate-AlGaN/GaN High Electron Mobility Sensor. Analyst 2019, 144, 663–668. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, J.; Yang, S.; Sheng, K.; Wang, P. Talanta Optimization of Gate Geometry towards High-Sensitivity AlGaN/GaN PH Sensor. Talanta 2019, 205, 120134. [Google Scholar] [CrossRef]
- Yang, X.; Ao, J.; Wu, S.; Ma, S.; Li, X.; Hu, L.; Liu, W.; Han, C. Low-Power pH Sensor Based on Narrow Channel Open-Gated Al0.25Ga0.75N/GaN HEMT and Package Integrated Polydimethylsiloxane Microchannels. Materials 2020, 13, 5282. [Google Scholar] [CrossRef] [PubMed]
- Veeralingam, S.; Badhulika, S. Surface Functionalized -Bi2O3 Nanofibers Based Flexible, Field-Effect Transistor-Biosensor (BioFET) for Rapid, Label-Free Detection of Serotonin in Biological Fluids. Sens. Actuators B Chem. 2020, 321, 128540. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Xiaochuan, X.; Ahmad, A.; Xue, D.; Huang, H.; Xu, N.; Xi, Q.; Guo, W.; Liang, H. High Sensitivity Detection of Glucose with Negatively Charged Gold Nanoparticles Functionalized the Gate of AlGaN/GaN High Electron Mobility Transistor. Sens. Actuators A Phys. 2020, 312, 112128. [Google Scholar] [CrossRef]
- Lin, C.L.; Kang, Y.W.; Chang, K.W.; Chang, W.H.; Wang, Y.L.; Lee, G.B. An integrated microfluidic system using field-effect transistors for crp detection. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 250–253. [Google Scholar]
- Sohn, Y.; Kim, Y.T. Field-Effect-Transistor Type C-Reactive Protein Sensor Using Cysteine-Tagged Protein G. Electron. Lett. 2008, 44, 955–956. [Google Scholar] [CrossRef]
- Protein, C.; Thangamuthu, M. Label-Free Electrochemical Immunoassay for C-Reactive Protein. Biosensors 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, W.; Guo, J.; Wang, J.; Zhang, Y. Electrochemical Detection of C-Reactive Protein Using Copper Nanoparticles and Hybridization Chain Reaction Amplifying Signal. Anal. Biochem. 2017, 539, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, C.; Prodromidis, M.; Economou, A.; Petrou, P.; Kakabakos, S. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal. Chim. Acta 2015, 886, 29–36. [Google Scholar] [CrossRef]
- Pu, X.; Zhu, D.; Chen, M. Rapid and Quantitative Detection of C-Reactive Protein Using Quantum Dots and Immunochromatographic Test Strips. Int. J. Nanomed. 2014, 9, 5619. [Google Scholar]
- Ouyang, M.; Carlo, D.D. Nanoplasmonic Swarm Biosensing Using Single Nanoparticle Colorimetry. Biosens. Bioelectron. 2019, 132, 162–170. [Google Scholar] [CrossRef]
- Tai, T.; Sinha, A.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, L.; Lee, G.; Chyi, J.; Shiesh, S.; Lee, G.; Wang, Y. Design and Demonstration of Tunable Amplified Sensitivity of AlGaN/GaN High Electron Mobility Transistor (HEMT)-Based Biosensors in Human Serum. Anal. Chem. 2019, 91, 5953–5960. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, Y.; Yang, S.; Sheng, K.; Wang, P. Low Limit of Detection of the AlGaN/GaN-Based Sensor by the Kelvin Connection Detection Technique. Microsyst. Nanoeng. 2021, 7, 51. [Google Scholar] [CrossRef]
- Liu, Q.; Aroonyadet, N.; Song, Y.; Wang, X.; Cao, X.; Liu, Y.; Cong, S.; Wu, F.; Thompson, M.E.; Zhou, C. Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using In2O3 Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano 2016, 10, 10117–10125. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, J.X.; Chen, D.N.; He, J.W.; Wang, A.J.; Feng, J.J. Ultrasensitive Label-Free Electrochemical Immunosensor of NT-ProBNP Biomarker Based on Branched AuPd Nanocrystals/N-Doped Honeycombed Porous Carbon. Bioelectrochemistry 2022, 148, 108225. [Google Scholar] [CrossRef]
- Li, H.; Yin, X.; Sun, D.; Xia, K.; Kang, C.; Chu, S.; Zhang, P.; Wang, H.; Qiu, Y. Detection of NT-pro BNP Using Fluorescent Protein Modified by Streptavidin as a Label in Immunochromatographic Assay. Sens. Bio-Sens. Res. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tu, A.; Shang, J.; Wang, Y.; Li, D.; Liu, L.; Gan, Z.; Yin, Y.; Zhang, P. Detection of B-Type Natriuretic Peptide by Establishing a Low-Cost and Replicable Fluorescence Resonance Energy Transfer Platform. Microchim. Acta 2020, 187, 1–9. [Google Scholar] [CrossRef]
- Jang, H.R.; Wark, A.W.; Baek, S.H.; Chung, B.H.; Lee, H.J. Ultrasensitive and Ultrawide Range Detection of a Cardiac Biomarker on a Surface Plasmon Resonance Platform. Anal. Chem. 2014, 86, 814–819. [Google Scholar] [CrossRef]
- Li, J.D.; Cheng, J.J.; Miao, B.; Wei, X.W.; Xie, J.; Zhang, J.C.; Zhang, Z.Q.; Wu, D.M. Detection of Prostate-Specific Antigen with Biomolecule-Gated AlGaN/GaN High Electron Mobility Transistors. J. Micromech. Microeng. 2014, 24, 075023. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U.M.E.; Pan, C. Applied Surface Science DNA-Based Functionalization of Two-Dimensional MoS 2 FET Biosensor for Ultrasensitive Detection of PSA. Appl. Surf. Sci. 2021, 548, 149169. [Google Scholar] [CrossRef]
- Liang, H.; Xu, H.; Zhao, Y.; Zheng, J.; Zhao, H.; Li, G.; Li, C. Ultrasensitive Electrochemical Sensor for Prostate Specific Antigen Detection with a Phosphorene Platform and Magnetic Covalent Organic Framework Signal Amplifier. Biosens. Bioelectron. 2019, 144, 111691. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, C.; Tang, Z.; Chen, M.; Zhao, H. A Novel Fluorescent Assay Based on DNAzyme-Assisted Detection of Prostate Specific Antigen for Signal Amplification. Anal. Chim. Acta 2020, 1104, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Erdene, N.; Park, J.; Jeong, D.; Lee, H.; Lee, S. Biosensors and Bioelectronics Real-Time Label-Free Immunoassay of Interferon-Gamma and Prostate-Specific Antigen Using a Fiber-Optic Localized Surface Plasmon Resonance Sensor. Biosens. Bioelectron. 2013, 39, 346–351. [Google Scholar] [CrossRef]
- Chen, K.H.; Kang, B.S.; Wang, H.T.; Lele, T.P.; Ren, F.; Wang, Y.L.; Chang, C.Y.; Pearton, S.J.; Dennis, D.M.; Johnson, W.; et al. c-erbB-2 Sensing Using AlGaN/GaN High Electron Mobility Transistors for Breast Cancer Detection. Appl. Phys. Lett. 2008, 92, 192103. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Zou, X.; Wu, S.; Wan, D.; Cao, A. Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors. Adv. Funct. Mater. 2017, 27, 1604096. [Google Scholar] [CrossRef]
- Freitas, M.; Nouws, H.P.A.; Delerue-matos, C. Electrochemical Sensing Platforms for HER2-ECD Breast Cancer Biomarker Detection. Electroanalysis 2018, 31, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Freitas, M.; Nouws, H.P.A.; Delerue-Matos, C. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens. Actuators B Chem. 2018, 273, 1008–1014. [Google Scholar] [CrossRef]
- Naghib, M.; Majidzadeh-A, K. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosens. Bioelectron. 2018, 117, 104–111. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, G.; Ding, Y.; Deng, C.; Xiang, J.; Wu, H. Talanta A Fluorescent Aptasensor for the Femtomolar Detection of Epidermal Growth Factor Receptor-2 Based on the Proximity of G-Rich Sequences to Ag Nanoclusters. Talanta 2019, 199, 238–243. [Google Scholar] [CrossRef]
- Lobry, M.; Hassan, E.M.; Derosa, M.C.; Caucheteur, C.; Wattiez, R. Talanta HER2 Breast Cancer Biomarker Detection Using a Sandwich Optical Fiber Assay. Talanta 2021, 221, 121452. [Google Scholar] [CrossRef]
- Chang, C.W.; Chen, P.H.; Wang, S.H.; Hsu, S.Y.; Hsu, W.T.; Tsai, C.C.; Wadekar, P.V.; Puttaswamy, S.; Cheng, K.H.; Hsieh, S.; et al. Fast Detection of Tumor Marker CA 19-9 Using AlGaN/GaN High Electron Mobility Transistors. Sens. Actuators B Chem. 2018, 267, 191–197. [Google Scholar] [CrossRef]
- Alarfaj, N.A.; El-Tohamy, M.F. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite. Int. J. Mol. Sci. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, H. Highly Sensitive and Selective Detection of the Pancreatic Cancer Biomarker CA 19-9 with The Electrolyte-Gated MoS2 -Based Field-Effect Transistor Immunosensor. Res. Sq. 2022, 1–20. [Google Scholar] [CrossRef]
- Lütfi, M.; Atar, N. Carbohydrate Antigen 19-9 Electrochemical Immunosensor Based on Gold Nanoparticles. Microchem. J. 2021, 170, 106643. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Ma, J.; Wu, C.; Li, N.; Zhou, K.; Yan, Y.; Li, M.; Hu, X.; Yan, H.; et al. Novel discovery of Schisandrin A regulating the interplay of autophagy and apoptosis in oligoasthenospermia by targeting SCF/c-kit and TRPV1 via biosensors. Acta Pharm. Sin. B 2023, in press. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, J.; Miao, B.; Liu, X.; Zhao, L.; Peng, H.; Wu, D.; Li, J. Ethanolamine Modified ZnO Nanorods-Based Disposable Gate-AlGaN/GaN High Electron Mobility Transistor for PH Sensing. IEEE Sens. J. 2021, 21, 2552–2558. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liao, Q.; Song, Y.; Ma, S. Reduced Graphene Oxide-Functionalized High Electron Mobility Transistors for Novel Recognition Pattern Label-Free DNA Sensors. Small 2013, 9, 4045–4050. [Google Scholar] [CrossRef]
- Jia, X.; Chen, D.; Bin, L.; Lu, H.; Zhang, R.; Zheng, Y. Highly Selective and Sensitive Phosphate Anion Sensors Based on AlGaN/GaN High Electron Mobility Transistors Functionalized by Ion Imprinted Polymer. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Bae, M.; Jo, S.; Shin, J.; Son, D.H.; Won, C.; Lee, J. Sensors and Actuators B: Chemical Differential-Mode HEMT-Based Biosensor for Real-Time and Label-Free Detection of C-Reactive Protein. Sens. Actuators B. Chem. 2016, 234, 316–323. [Google Scholar] [CrossRef]
- Hess, L.H.; Seifert, M.; Garrido, J.A. Graphene Transistors for Bioelectronics. Proc. IEEE 2013, 101, 1780–1792. [Google Scholar] [CrossRef] [Green Version]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic Electrochemical Transistors. Nat. Rev. Mater. 2018, 3, 1–14. [Google Scholar] [CrossRef]
- Kim, S.; Rim, T.; Kim, K.; Lee, U.; Baek, E.; Lee, H.; Baek, C.; Meyyappan, M.; Jamal, M.; Lee, J. Silicon Nanowire Ion Sensitive Field Effect Transistor with Integrated Ag/AgCl Electrode: PH Sensing and Noise Characteristics. Analyst 2011, 136, 5012–5016. [Google Scholar] [CrossRef] [Green Version]
- Falina, S.; Syamsul, M.; Rhaffor, N.A.; Sal Hamid, S.; Mohamed Zain, K.A.; Abd Manaf, A.; Kawarada, H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors 2021, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Sarangadharan, I.; Chen, P.H.; Kuo, W.C.; Wang, Y.L. Study of Stability and Sensitivity of Cardiac Troponin I Based on FET Sensor. ECS Trans. 2019, 89, 57–63. [Google Scholar] [CrossRef]
- Lin, J.L.; Chu, Y.M.; Hsaio, S.H.; Chin, Y.L.; Sun, T.P. Structures of Anodized Aluminum Oxide Extended-Gate Field-Effect Transistors on PH Sensors. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2006, 45, 7999–8004. [Google Scholar] [CrossRef]
- Das, A.; Ko, D.H.; Chen, C.H.; Chang, L.B.; Lai, C.S.; Chu, F.C.; Chow, L.; Lin, R.M. Highly Sensitive Palladium Oxide Thin Film Extended Gate FETs as PH Sensor. Sens. Actuators B Chem. 2014, 205, 199–205. [Google Scholar] [CrossRef]
- Akiyama, T.; Ujihira, Y.; Okabe, Y.; Sugano, T.; Niki, E. Ion-Sensitive Field-Effect Transistors with Inorganic Gate Oxide for PH Sensing. IEEE Trans. Electron Devices 1982, 29, 1936–1941. [Google Scholar] [CrossRef]
- Sharma, N.; Member, S.; Mishra, S.; Singh, K.; Chaturvedi, N.; Chauhan, A.; Periasamy, C.; Kharbanda, D.K.; Parjapat, P.; Khanna, P.K.; et al. High-Resolution AlGaN/GaN HEMT-Based Electrochemical Sensor for Biomedical Applications. IEEE Trans. Electron Devices 2020, 67, 289–295. [Google Scholar] [CrossRef]
- Wang, L.; Bu, Y.; Ao, J.P. Effect of Oxygen Plasma Treatment on the Performance of AlGaN/GaN Ion-Sensitive Field-Effect Transistors. Diam. Relat. Mater. 2017, 73, 1–6. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, H.; Liu, J.; Xia, X.; Guo, W.; Huang, H.; Xu, N.; Xi, Q.; Liang, H. Materials Science in Semiconductor Processing Improved Performance of AlGaN/GaN HEMT Based H + Sensors by Surface Hydroxylation Treatment. Mater. Sci. Semicond. Process. 2021, 121, 105386. [Google Scholar] [CrossRef]
- Steinhoff, G.; Hermann, M.; Schaff, W.J.; Eastman, L.F.; Stutzmann, M.; Eickhoff, M. PH Response of GaN Surfaces and Its Application for PH-Sensitive Field-Effect Transistors. Appl. Phys. Lett. 2003, 83, 177–179. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiu, Y.S. Photoelectrochemical Passivated ZnO-Based Nanorod Structured Glucose Biosensors Using Gate-Recessed AlGaN/GaN Ion-Sensitive Field-Effect-Transistors. Sens. Actuators B Chem. 2015, 210, 756–761. [Google Scholar] [CrossRef]
- Lee, H.; Bae, M.; Jo, S.-H.; Shin, J.-K.; Son, D.; Won, C.-H.; Jeong, H.-M.; Lee, J.-H.; Kang, S.-W. AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein. Sensors 2015, 15, 18416–18426. [Google Scholar] [CrossRef] [Green Version]
- Spaude, M.; Siweris, H.J.; Reinschlussel, R.; Schiek, B. A Noise Temperature Measurement System for Mismatched Noise Sources. IEEE Trans. Instrum. Meas. 1984, 33, 263–268. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Guan, M.; Cui, L.; Ding, K.; Zhang, B.; Lin, Z.; Huang, F.; Zeng, Y. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors. J. Cryst. Growth 2015, 425, 381–384. [Google Scholar] [CrossRef]
- Liu, H.Y.; Hsu, W.C.; Chen, W.F.; Lin, C.W.; Li, Y.Y.; Lee, C.S.; Sun, W.C.; Wei, S.Y.; Yu, S.M. Investigation of AlGaN/GaN Ion-Sensitive Heterostructure Field-Effect Transistors-Based PH Sensors with Al2O3 Surface Passivation and Sensing Membrane. IEEE Sens. J. 2016, 16, 3514–3522. [Google Scholar] [CrossRef]
- Wang, L.; Bu, Y.; Li, L.; Ao, J.P. Effect of Thermal Oxidation Treatment on PH Sensitivity of AlGaN/GaN Heterostructure Ion-Sensitive Field-Effect Transistors. Appl. Surf. Sci. 2017, 411, 144–148. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Zhang, T.; Liu, X.; Ao, J. Applied Surface Science Enhanced PH Sensitivity of AlGaN/GaN Ion-Sensitive Field Effect Transistor with Al2O3 Synthesized by Atomic Layer Deposition. Appl. Surf. Sci. 2018, 427, 1199–1202. [Google Scholar] [CrossRef]
- Stock, D.; Müntze, G.M.; Figge, S.; Eickhoff, M. Ion Sensitive AlGaN/GaN Field-Effect Transistors with Monolithically Integrated Wheatstone Bridge for Temperature- and Drift Compensation in Enzymatic Biosensors. Sens. Actuators B Chem. 2018, 263, 20–26. [Google Scholar] [CrossRef]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.H.; Lee, G.B.; Wang, Y.L. Aptamer Functionalized AlGaN/GaN HEMT Biosensor Array for Electrical Enumeration of Circulating Tumor Cells. ECS Trans. 2017, 77, 17–20. [Google Scholar] [CrossRef]
- Xing, J.; Huang, D.; Dai, Y.; Liu, Y.; Ren, Y.; Han, X.; Yang, H.; Hou, Y.; Wu, Z.; Liu, Y.; et al. Influence of an Integrated Quasi-Reference Electrode on the Stability of All-Solid-State AlGaN/GaN Based PH Sensors. J. Appl. Phys. 2018, 124, 034904. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Pu, T.; Liu, Y.; Ao, J. Superlattices and Microstructures Normally off AlGaN/GaN Ion-Sensitive Field effect Transistors Realized by Photoelectrochemical Method for PH Sensor Application. Superlattices Microstruct. 2019, 128, 99–104. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Xie, Z.; Liu, Y.; Lei, J.; Guo, H.; Dai, Q.; Kim, J.; Kang, S.; Won, C.; et al. Enhanced Stability and Sensitivity of AlGaN/GaN-HEMTs pH Sensor by Reference Device. IEEE Sens. J. 2021, 21, 9771–9776. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Zhou, J.; Wang, T.; Ren, M.; Chen, G.; Pu, T.; Algan, A. Enhanced PH Sensitivity of AlGaN/GaN Ion-Sensitive Field-Effect Transistor by Recess Process and Ammonium Hydroxide Treatment. IEEE Trans. Electron Devices 2021, 68, 1250–1254. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Xue, D.; Xia, X. An effEctive Hydroxylation Route for a Highly Sensitive Glucose Sensor Using APTES/GOx Functionalized AlGaN/GaN High Electron Mobility transistor. RSC Adv. 2020, 10, 11393–11399. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiu, Y.S. Gate-Recessed AlGaN/GaN ISFET Urea Biosensor Fabricated by Photoelectrochemical Method. IEEE Sens. J. 2016, 16, 1518–1523. [Google Scholar] [CrossRef]
- Niigata, K.; Narano, K.; Maeda, Y.; Ao, J.P. Temperature Dependence of Sensing Characteristics of a PH Sensor Fabricated on AlGaN/GaN Heterostructure. Jpn. J. Appl. Phys. 2014, 53, 5. [Google Scholar] [CrossRef]
- Bhat, A.M.; Shafi, N.; Periasamy, C. Investigation of AlGaN/GaN HEMT for PH Sensing Applications and Sensitivity Optimization. Superlattices Microstruct. 2021, 160, 107067. [Google Scholar] [CrossRef]
- Pal, P.; Pratap, Y.; Gupta, M.; Kabra, S. Analytical Modeling and Simulation of AlGaN/GaN MOS-HEMT for High Sensitive PH Sensor. IEEE Sens. J. 2021, 21, 12998–13005. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chen, P.C.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Shiesh, S.C.; Lee, G.B.; et al. High Sensitivity Cardiac Troponin I Detection in Physiological Environment Using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosens. Bioelectron. 2018, 100, 282–289. [Google Scholar] [CrossRef]
- Sheen, C.W.; Shi, J.; Mirtensson, J.; Parikh, A.N.; Allara, D.L. A New Class of Organized Self-Assembled Monolayers: Alkane Thiols on GaAs (100). J. Am. Chem. Soc. 1992, 114, 1514–1515. [Google Scholar] [CrossRef]
- Tiberio, R.C.; Craighead, H.G.; Lercel, M.; Lau, T.; Sheen, C.W.; Allara, D.L. Self-assembled Monolayer Electron Beam Resist on GaAs. Appl. Phys. Lett. 1993, 62, 476. [Google Scholar] [CrossRef]
- Ohno, H.; Motomatsu, M.; Mizutani, W.; Tokumoto, H. AFM Observation of Self-Assembled Monolayer Films on GaAs (110). Jpn. J. Appl. Phys. 1995, 34, 1381. [Google Scholar] [CrossRef] [Green Version]
- Sileo, L.; Martiradonna, L.; Brunetti, V.; Tasco, V.; De Vittorio, M. Microelectronic Engineering Gallium Arsenide Passivation Method for the Employment of High Electron Mobility Transistors in Liquid Environment. Microelectron. Eng. 2012, 97, 333–336. [Google Scholar] [CrossRef]
- Yu, J.; Gao, G.; Sun, B.; Liang, L.; Shen, Q.; Zhang, Y.; Cao, H. Optimization of Sensing-Pad Functionalizing Strategy toward Separative Extended-Gate FET Biosensors for PSA Detection. J. Pharm. Biomed. Anal. 2022, 211, 114597. [Google Scholar] [CrossRef]
- Ding, X.; Miao, B.; Gu, Z.; Wu, B.; Hu, Y.; Wang, H.; Zhang, J.; Wu, D.; Lu, W.; Li, J. Highly Sensitive Extended Gate-AlGaN/GaN High Electron Mobility Transistor for Bioassay Applications. RSC Adv. 2017, 7, 55835–55838. [Google Scholar] [CrossRef] [Green Version]
- Wirde, M.; Gelius, U.; Nyholm, L. Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry. Langmuir 1999, 15, 6370–6378. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Miao, B.; Gu, Z.; Wang, J.; Peng, H.X.; Zhang, J.; Zeng, B.; Li, J. A Differential Extended Gate-AlGaN/GaN HEMT Sensor for Real-Time Detection of Ionic Pollutants. Anal. Methods 2019, 11, 3981–3986. [Google Scholar] [CrossRef]
- Sadak, O.; Sundramoorthy, A.K.; Gunasekaran, S. Biosensors and Bioelectronics Highly Selective Colorimetric and Electrochemical Sensing of Iron (III) Using Nile Red Functionalized Graphene Film. Biosens. Bioelectron. 2017, 89, 430–436. [Google Scholar] [CrossRef]
- Faizi, S.H.; Gupta, S.; Mohan, K.V.; Jain, V.K.; Sen, P. Highly selective visual detection of Fe3+ at ppm level. Sens. Actuators B. Chem. 2016, 222, 15–20. [Google Scholar] [CrossRef]
- Bakkaus, E.; Collins, R.N.; Morel, J.; Gouget, B. Anion Exchange Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry Detection of the Co2+, Cu2+, Fe3+ and Ni2+ Complexes of Mugineic and Deoxymugineic Acid. J. Chromatogr. A 2006, 1129, 208–215. [Google Scholar] [CrossRef]
- Kindra, L.R.; Eggers, C.J.; Liu, A.T.; Mendoza, K.; Mendoza, J.; Myers, A.R.K.; Penner, R.M. Lithographically Patterned PEDOT Nanowires for the Detection of Iron(III) with Nanomolar Sensitivity. Anal. Chem. 2015, 87, 11492–11500. [Google Scholar] [CrossRef]
- Pyo, J.; Jeon, J.; Koh, Y.; Cho, C.; Park, H.; Park, K.; Woon, S.; Cho, W.; Pyo, J.; Jeon, J.; et al. AlGaN/GaN High-Electron-Mobility Transistor PH Sensor with Extended Gate Platform. AIP Adv. 2018, 8, 085106. [Google Scholar] [CrossRef] [Green Version]
- Chi, L.; Chou, J.; Chung, W.; Sun, T.; Hsiung, S. Study on Extended Gate Field Effect Transistor with Tin Oxide Sensing Membrane. Mater. Chem. Phys. 2000, 63, 19–23. [Google Scholar] [CrossRef]
- Chou, J.-C.; Kwan, P.-K.; Chen, Z.-J. SnO2 Separative Structure Extended Gate H+-Ion Sensitive Field Effect Transistor by the Sol–Gel Technology and the Readout Circuit Developed by Source Follower. Jpn. J. Appl. Phys. 2003, 42, 6790. [Google Scholar] [CrossRef]
- Xu, M.; Li, S.; Guan, M.; Zhang, Y.; Zeng, Y. Extended-Gate AlGaAs/GaAs HEMT for Accurate Cardiac Troponin I Antigen Detection in Clinical Human Serum. Appl. Phys. Express 2020, 13, 021003. [Google Scholar] [CrossRef]
- Phys, A.; Yu, J.; Xu, M.; Liang, L.; Guan, M. Separative Extended-Gate AlGaAs/GaAs HEMT Biosensors Based on Capacitance Change Strategy. Appl. Phys. Lett. 2020, 116, 123704. [Google Scholar] [CrossRef]
- Chen, Y.W.; Kuo, W.C.; Tai, T.Y.; Hsu, C.P.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, S.L.; Sukesan, R.; Lin, H.Y.; Kao, K.W.; et al. Highly Sensitive and Rapid MicroRNA Detection for Cardiovascular Diseases with Electrical Double Layer (EDL) Gated AlGaN/GaN High Electron Mobility Transistors. Sens. Actuators B Chem. 2018, 262, 365–370. [Google Scholar] [CrossRef]
- Pulikkathodi, A.K.; Sarangadharan, I.; Lo, C.Y.; Chen, P.H.; Chen, C.C.; Wang, Y.L. Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles. Int. J. Mol. Sci. 2018, 19, 2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, W.; Sarangadharan, I.; Pulikkathodi, A.K.; Chen, P. Investigation of Electrical Stability and Sensitivity of Electric Double Layer Gated Field-Effect Transistors (FETs) for miRNA Detection. Sensors 2019, 19, 1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.W.; Tai, T.Y.; Hsu, C.P.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, H.L.; Sukesan, R.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; et al. Direct Detection of DNA Using Electrical Double Layer Gated High Electron Mobility Transistor in High Ionic Strength Solution with High Sensitivity and Specificity. Sens. Actuators B Chem. 2018, 271, 110–117. [Google Scholar] [CrossRef]
- Sinha, A.; Tai, T.Y.; Li, K.H.; Gopinathan, P.; Chung, Y.D.; Sarangadharan, I.; Ma, H.P.; Huang, P.C.; Shiesh, S.C.; Wang, Y.L.; et al. An Integrated Microfluidic System with Field-Effect-Transistor Sensor Arrays for Detecting Multiple Cardiovascular Biomarkers from Clinical Samples. Biosens. Bioelectron. 2019, 129, 155–163. [Google Scholar] [CrossRef]
- Pulikkathodi, A.K.; Sarangadharan, I.; Lo, C.-Y.; Chen, P.-H.; Chen, C.-C.; Wang, Y.-L. Detection and Analysis of Extracellular Vesicles in Physiological Salt Environment Using AlGaN/GaN High Electron Mobility Transistor Biosensors. ECS Meet. Abstr. 2019, MA2019-01, 1301. [Google Scholar] [CrossRef]
- Yang, J.; Carey, P.; Ren, F.; Wang, Y.L.; Good, M.L.; Jang, S.; Mastro, M.A.; Pearton, S.J. Rapid Detection of Cardiac Troponin i Using Antibody-Immobilized Gate-Pulsed AlGaN/GaN High Electron Mobility Transistor Structures. Appl. Phys. Lett. 2017, 111, 202104. [Google Scholar] [CrossRef]
- Kumar, A.; Sarangadharan, I.; Hsu, C.; Chen, Y.; Hung, L.; Lee, G.; Chyi, J.; Lee, G.; Wang, Y. Sensors and Actuators B: Chemical Enumeration of Circulating Tumor Cells and Investigation of Cellular Responses Using Aptamer-Immobilized AlGaN/GaN High Electron Mobility Transistor Sensor Array. Sens. Actuators B Chem. 2018, 257, 96–104. [Google Scholar] [CrossRef]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.H.; Lee, G.Y.; Chyi, J.I.; Lee, G.B.; Wang, Y.L. Dynamic Monitoring of Transmembrane Potential Changes: A Study of Ion Channels Using an Electrical Double Layer-Gated FET Biosensor. Lab Chip 2018, 18, 1047–1056. [Google Scholar] [CrossRef]
- Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C.; et al. Beyond the Debye Length in High Ionic Strength Solution: Direct Protein Detection with Field-Effect Transistors (FETs) in Human Serum. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hseih, C.-Y.; Sarangadharan, I.; Sukesan, R.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. Beyond the Limit of Ideal Nernst Sensitivity: Ultra-High Sensitivity of Heavy Metal Ion Detection with Ion-Selective High Electron Mobility Transistors. ECS J. Solid State Sci. Technol. 2018, 7, Q176–Q183. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Hsu, C.-P.; Chu, C.-H.; Regmi, A.; Chen, Y.W.; Wang, Y.-L. Blood Based Biomarker Detection Using FET Biosensor: Towards Self-Health Management. ECS Trans. 2017, 77, 11–15. [Google Scholar] [CrossRef]
- Hung, S.C.; Wang, Y.L.; Hicks, B.; Pearton, S.J.; Ren, F.; Johnson, J.W.; Rajagopal, P.; Roberts, J.C.; Piner, E.L.; Linthicum, K.J.; et al. Integration of Selective Area Anodized AgCl Thin Film with AlGaN/GaN HEMTs for Chloride Ion Detection. Electrochem. Solid-State Lett. 2008, 11, 241–244. [Google Scholar] [CrossRef]
- Suzuki, H.; Hirakawa, T.; Sasaki, S.; Karube, I. Micromachined Liquid-Junction Ag/AgCl Reference Electrode. Sens. Actuators B Chem. 1998, 46, 146–154. [Google Scholar] [CrossRef]
- Myers, M.; Khir, F.L.M.; Podolska, A.; Umana-Membreno, G.A.; Nener, B.; Baker, M.; Parish, G. Nitrate Ion Detection Using AlGaN/GaN Heterostructure-Based Devices without a Reference Electrode. Sens. Actuators B Chem. 2013, 181, 301–305. [Google Scholar] [CrossRef]
- Ding, X.; Yang, S.; Miao, B.; Gu, L.; Gu, Z.; Zhang, J.; Wu, B.; Wang, H.; Wu, D.; Li, J. Molecular Gated-AlGaN/GaN High Electron Mobility Transistor for PH Detection. Analyst 2018, 143, 2784–2789. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, H.; Liang, H.; Liu, J.; Xia, X.; Guo, W.; Huang, H.; Xu, N. Sensors and Actuators B: Chemical Enhancing the Sensitivity of the Reference Electrode Free AlGaN/GaN HEMT Based PH Sensors by Controlling the Threshold Voltage. Sens. Actuators B Chem. 2020, 306, 127609. [Google Scholar] [CrossRef]
- Lai, S.; Viola, F.A.; Cosseddu, P.; Bonfiglio, A. Floating Gate, Organic Field-Effect Transistor-Based Sensors towards Biomedical Applications Fabricated with Large-Area Processes over Flexible Substrates. Sensors 2018, 18, 688. [Google Scholar] [CrossRef]
- Zhang, Q.; Kaisti, M.; Prabhu, A.; Yu, Y.; Song, Y.; Rafailovich, M.H.; Rahman, A.; Levon, K. Electrochimica Acta Polyaniline-Functionalized Ion-Sensitive Fl Oating-Gate FETs for the on-Chip Monitoring of Peroxidase-Catalyzed Redox Reactions. Electrochim. Acta 2018, 261, 256–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Majumdar, H.S.; Kaisti, M.; Prabhu, A.; Ivaska, A.; Österbacka, R.; Rahman, A.; Levon, K. Surface Functionalization of Ion-Sensitive Floating-Gate Field-Effect Transistors with Organic Electronics. IEEE Trans. Electron Devices 2015, 62, 1291–1298. [Google Scholar] [CrossRef]
- Kaisti, M. Detection Principles of Biological and Chemical FET Sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.S.; White, S.P.; Dorfman, K.D.; Frisbie, C.D. Interfacial Charge Contributions to Chemical Sensing by Electrolyte-Gated Transistors with Floating Gates. J. Phys. Chem. Lett. 2018, 9, 1335–1339. [Google Scholar] [CrossRef]
- Thomas, M.S.; Adrahtas, D.Z.; Frisbie, C.D.; Dorfman, K.D. Modeling of Quasi-Static Floating-Gate Transistor Biosensors. ACS Sens. 2021, 6, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-K.; Cho, W.-J. High-Sensitivity PH Sensor Based on Coplanar Gate AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor. Chemosensors 2021, 9, 42. [Google Scholar] [CrossRef]
- Kaisti, M.; Zhang, Q.; Levon, K. Compact Model and Design Considerations of an Ion-Sensitive Floating Gate FET. Sens. Actuators B Chem. 2017, 241, 321–326. [Google Scholar] [CrossRef]
- Tulip, F.S.; Eteshola, E.; Desai, S.; Mostafa, S.; Roopa, S.; Evans, B.; Islam, S.K. Direct Label-Free Electrical Immunodetection of Transplant Rejection Protein Biomarker in Physiological Buffer Using Floating Gate AlGaN/GaN High Electron Mobility Transistors. IEEE Trans. Nanobiosci. 2014, 13, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.; Corrigan, D.K. SAM Composition and Electrode Roughness Affect Performance of a DNA Biosensor for Antibiotic Resistance. Biosensors 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Huq, H.F.; Ii, H.T.; Castillo, J. Characteristics of AlGaN/GaN HEMTs for Detection of MIG. J. Mod. Phys. 2016, 7, 1712–1724. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.; Member, G.S.; Periasamy, C. Analytical Modeling and Simulation-Based Investigation of AlGaN/AlN/GaN Bio-HEMT Sensor for C-ErbB-2 Detection. IEEE Sens. J. 2018, 18, 9595–9603. [Google Scholar] [CrossRef]
- Li, T.; Joshi, R.P.; Del Rosario, R.D. Requirements for Low Intermodulation Distortion in GaN-AlxGa1-XN High Electron Mobility Transistors: A Model Assessment. IEEE Trans. Electron Devices 2002, 49, 1511–1518. [Google Scholar] [CrossRef]
- Hsu, L.; Walukiewicz, W. Effect of Polarization Fields on Transport Properties in AlGaN/GaN Heterostructures. J. Appl. Phys. 2001, 89, 1783–1789. [Google Scholar] [CrossRef]
- Ahn, J.H.; Choi, S.J.; Han, J.W.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Double-Gate Nanowire Field Effect Transistor for a Biosensor. Nano Lett. 2010, 10, 2934–2938. [Google Scholar] [CrossRef]
- Sonmez, B.G.; Ertop, O.; Mutlu, S. Modelling and Realization of a Water-Gated Field Effect Transistor (WG-FET) Using 16-nm-Thick Mono-Si Film. Sci. Rep. 2017, 7, 12190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Q.; Yang, Z.; Wang, M.; Tao, M.; Yin, R.; Li, Y.; Yang, N.; Xu, W.; Gao, C.; Hao, Y. Planar Dual Gate GaN HEMT Cascode Amplifier as a Voltage Readout PH Sensor with High and Tunable Sensitivities. IEEE Electron Device Lett. 2020, 41, 485–488. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, X.; Xi, Z.; Zhang, Y.; Li, H.; Li, Z.; Shi, H.; Huang, L.; Shen, R.; Tao, J.; et al. A New Biosensor Detection System to Overcome the Debye Screening Effect: Dialysis-Silicon Nanowire Field Effect Transistor. Int. J. Nanomed. 2019, 14, 2985–2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, N.; Schwarz, S.U.; Cimalla, V.; Ambacher, O. Detection of Different Target-DNA Concentrations with Highly Sensitive AlGaN/GaN High Electron Mobility Transistors. Sens. Actuators B Chem. 2015, 210, 633–639. [Google Scholar] [CrossRef]
- Wu, C.R.; Wang, S.L.; Chen, P.H.; Wang, Y.L.; Wang, Y.R.; Chen, J.C. Demonstration of the Enhancement of Gate Bias and Ionic Strength in Electric-Double-Layer Field-Effect-Transistor Biosensors. Sens. Actuators B Chem. 2021, 334, 129567. [Google Scholar] [CrossRef]
- Bhattacharyya, I.M.; Shalev, G. Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications. ACS Sens. 2020, 5, 154–161. [Google Scholar] [CrossRef]
- Liao, L.W.; Chen, P.H.; Tsai, S.Y.; Tripathi, A.; Paulose, A.K.; Chang, S.J.; Wang, Y.L. Rapid β-Human Chorionic Gonadotropin Detection in Urine with Electric-Double-Layer Gated Field-Effect Transistor Biosensors and a Handheld Device. Biomicrofluidics 2021, 15, 024106. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Jia, X.; Dong, Y.; Ye, J.; Chen, D.; Zhang, R.; Zheng, Y. Applications of AlGaN/GaN High Electron Mobility Transistor-Based Sensors in Water Quality Monitoring. Semicond. Sci. Technol. 2020, 35, 123001. [Google Scholar] [CrossRef]
- Tikhomirov, V.G.; Gudkov, A.G.; Agasieva, S.V.; Gorlacheva, E.N.; Shashurin, V.D.; Zybin, A.A.; Evseenkov, A.S.; Parnes, Y.M. The Sensitivity Research of Multiparameter Biosensors Based on HEMT by the Mathematic Modeling Method. J. Phys. Conf. Ser. 2017, 917, 042016. [Google Scholar]
- Makowski, M.S.; Kim, S.; Gaillard, M.; Janes, D.; Manfra, M.J.; Bryan, I.; Sitar, Z.; Arellano, C.; Xie, J.; Collazo, R.; et al. Physisorption of Functionalized Gold Nanoparticles on AlGaN/GaN High Electron Mobility Transistors for Sensing Applications. Appl. Phys. Lett. 2013, 102, 074102. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.W.; Chang, Y.W.; Lee, G.Y.; Cho, S.; Kang, M.J.; Pyun, J.C. A Capacitive Biosensor Based on an Interdigitated Electrode with Nanoislands. Anal. Chim. Acta 2014, 844, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Syedmoradi, L.; Ahmadi, A.; Norton, M.L.; Omidfar, K. A Review on Nanomaterial-Based Field Effect Transistor Technology for Biomarker Detection. Microchim. Acta 2019, 186, 739. [Google Scholar] [CrossRef]
Measurement Technique/ Device | Detection Layer | Medium | Range | Limit of Detection | Response Time | References |
---|---|---|---|---|---|---|
C-Reactive Protein (CRP) | ||||||
HEMT | CRP-specific aptamer | Human serum | 0.24–1.18 mg/L | 0.34 mg/L | 10 µs | [10] |
HEMT | CRP-specific aptamer | Clinical sample (serum) | 0.029 mg/L–2900 mg/L | 0.029 mg/L | 10 min | [55] |
HEMT | CRP-specific aptamer | Clinical sample (serum) | 0.625 mg/L–10.000 mg/L | 0.34 mg/L | 50 µs | [13] |
FET | Cysteine-tagged protein G + Anti-CRP | PBS | 3–20 mg/mL | 0.01 µg/mL | 10 min | [56] |
Electrochemical | AuNPs + Anti-CRP | Human serum | 0.4–200 nM | 0.15 nM | 30 min | [57] |
Electrochemical | Copper NPs | Human serum | 1.0 fg/mL–100 ng/mL | 0.33 fg/mL | 45 min | [58] |
Electrochemical | Bismuth citrate | Human serum | 0.2–100 ng/mL | 0.05 ng/mL | 30 min | [59] |
Fluorescence | Monoclonal antibody + QDs | Human serum | 0.5–300 mg/L | 0.25 mg/L | 15 min | [60] |
SPR | Anti-CRP | Human serum | 1 ng/mL–10 µg/mL | 10 pM | >1 h | [61] |
Brain Natriuretic Peptide (BNP) | ||||||
HEMT | Aptamer | Clinical serum | 0–10 ng/mL | - | 5 min | [62] |
HEMT | Anti-BNP on microbeads | PBS | 0.47 ng/mL–1.29 pg/mL | 97 fg/mL | 5 min | [63] |
FET | In2O3 nanoribbon + Anti-BNP | PBS | 10–90 pg/mL | 10 pg/mL | 45 min | [64] |
Electrochemical | AuPd nanocrystals/N-doped porous carbon (AuPd NCS/NPC) | PBS | 0.001–10 ng/mL | 0.34 pg/mL | - | [65] |
Fluorescence | Anti-NT-proBNP | Human serum | 200 pg/m/L–26,000 pg/mL | 47 pg/mL | 10 min | [66] |
Fluorescence | GO + FAM-aptamer | Blood sample | 0.074–0.56 pg/mL | 45 fg/mL | - | [67] |
SPR | Au nanocubes + Anti-BNP | Human serum | 1 aM to 500 nM | 1 nM | - | [68] |
Prostate Specific Antigen (PSA) | ||||||
HEMT | Anti-PSA | PBS | 0.1 pg/mL–1 ng/mL | 0.1 pg/mL | 150 s | [69] |
FET | B-SA system with DNA tetrahedron | PBS Human serum | 1 fg/mL–100 ng/mL | 1 fg/mL | >2 min 4 min | [70] |
Electrochemical | BPene + Au NPs | PBS | 0.0001 ng/mL 10 ng/mL | 30 fg/mL | - | [71] |
Fluorescence | Sub-FAM | Human serum | 1–100 pg/mL | 0.76 pg/mL | 60 min | [72] |
SPR | Anti-PSA | PBS | 0.5 pg/mL–500 pg/mL | 1 pg/mL | 5 min | [73] |
Human Epidermal Growth Factor Receptor 2 (HER2/C-erB-2) | ||||||
HEMT | Au- HSCH2COOH + Anti-C-erB-2 | PBS | 0.25–16.7 µg/mL | 0.25 µg/mL | >5 s | [74] |
FET | Graphene nanomesh (GNM) + HER2 aptamer | PBS | 0.0001 to 10 ng/mL | 0.1 pg/mL | >10 s | [75] |
Electrochemical | MWCNT(COOH)/AuNPs | Spiked human serum | 7.5–50 ng/mL | 0.16 ng/mL | - | [76] |
Electrochemical | MIP/AuSPE | Spiked human serum | 10 to 70 ng/mL | 1.6 ng/mL | 7 min | [77] |
Electrochemical | (NFG)/AgNPs/PANI + Anti-HER2 | Human serum | 10−5 × 106 cells/mL | 2 cells/mL | 30 min | [78] |
Fluorescence | AgNCs (dsDNA-AgNCs) + HApt | PBS | 8.5 fM to 225 fM | 0.0904 fM | 20 min | [79] |
SPR | Anti-HER2 + ssDNA aptamers | PBS | 10−12 g/mL–10−6 g/mL | 9.3 ng/mL | - | [80] |
Carbohydrate antigen 19-9 (CA 19-9) | ||||||
HEMT | APTES + Anti-CA 19-9 | PBS | 15 U/mL–150 U/mL | 15 U/mL | - | [81] |
Fluorescence | Carbon quantum dots/gold (CQDs/Au) + Anti-CA 19-9 | Human serum | 0.01–350 U/mL | 0.007 U/mL | 15 min | [82] |
FET | MoS2 nanosheets + Anti-CA 19-9 | PBS | 1 × 10−12 U/mL–1 × 10−4 U/mL | 2.8 × 10− 13 U/mL | 20 min | [83] |
Electrochemical | Au NPs + Anti-CA 19-9 | PBS | 0.1–10.0 µU/mL | 0.030 µU/mL | - | [84] |
HEMT Platform | Detection | RSD (%) | Ref. |
---|---|---|---|
AlGaAs/GaAs | Oligoasthenospermia | <0.7 | [85] |
AlGaN/GaN | pH | 0.5 | [86] |
AlGaS/GaAs | DNA | 6.02 | [87] |
AlGaN/GaN | Phosphate anion | 4.4 | [88] |
AlGaN/GaN | CRP | 9.2 | [89] |
Type of HEMT | Sensor Applications | Functionalization, Techniques | Sensitivity, Limit of Detection | References |
---|---|---|---|---|
AlGaAs/InGaAs | Mercury (II) irons (Hg2+) | Au-thiol ssDNA | 10 nM | [105] |
AlGaN/GaN | pH | Al2O3, Ultrasonic spray pyrolysis deposition (USPD) | 55.6 mV/pH | [106] |
AlGaN/GaN | pH | Thermal oxidation treatment | 57.7 mV/pH | [107] |
AlGaN/GaN | pH | Al2O3, Atomic layer deposition (ALD) | 57.8 mV/pH | [108] |
AlGaN/GaN | pH | Al2O3, Atomic layer deposition (ALD) | - | [109] |
AlGaN/GaN | Circulating tumor cells (CTCs) | Au-thiol aptamer | - | [110] |
AlGaN/GaN | pH | Au | 55 mV/pH | [111] |
AlGaN/GaN | pH | Photoelectrochemical (PEC) | 56.3 mV/pH | [112] |
AlGaN/GaN | pH | - | 54.38 mV/pH | [113] |
AlGaN/GaN | pH | Ammonium hydroxide (NH4OH) treatment | 84.39 µA/pH | [114] |
AlGaN/GaN | Glucose | APTES SAMs | 3.15 × 104 µA/mM1cm2, 10 nM | [115] |
AlGaN/GaN | Glucose | APTES/AuNPs | 1 × 106 µA/mM1cm2, 1 nM | [54] |
AlGaN/GaN | Urea | APTES/AuNPs | 18.15 mA/pCurea, 25 μM–50 mM | [116] |
AlGaN/GaN | pH | - | 69.5 mV/pH | [117] |
AlGaN/GaN | pH | - | 162 mV/pH | [118] |
AlGaN/GaN | pH | - | 132 mA/mm-pH, 950 mV/pH | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, N.; Mohd Asri, R.I.; Mohamed Omar, M.F.; Manaf, A.A.; Kawarada, H.; Falina, S.; Syamsul, M. Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors. Micromachines 2023, 14, 325. https://doi.org/10.3390/mi14020325
Fauzi N, Mohd Asri RI, Mohamed Omar MF, Manaf AA, Kawarada H, Falina S, Syamsul M. Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors. Micromachines. 2023; 14(2):325. https://doi.org/10.3390/mi14020325
Chicago/Turabian StyleFauzi, Najihah, Rahil Izzati Mohd Asri, Mohamad Faiz Mohamed Omar, Asrulnizam Abd Manaf, Hiroshi Kawarada, Shaili Falina, and Mohd Syamsul. 2023. "Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors" Micromachines 14, no. 2: 325. https://doi.org/10.3390/mi14020325
APA StyleFauzi, N., Mohd Asri, R. I., Mohamed Omar, M. F., Manaf, A. A., Kawarada, H., Falina, S., & Syamsul, M. (2023). Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors. Micromachines, 14(2), 325. https://doi.org/10.3390/mi14020325