Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.1.1. Materials
2.1.2. Experimental Apparatus
2.1.3. Experimental Protocol
2.1.4. Fluid Rheology
2.2. Numerical Simulations
2.2.1. Mathematical Model
2.2.2. Boundary and Initial Conditions
2.2.3. Dimensionless Numbers
2.2.4. Simulation Software
2.2.5. Mesh and Mesh Convergence Study
3. Results and Discussion
3.1. Experimental Results
3.2. Simulations Results
3.3. Die Swell Ratio: Experiments vs. Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Gupta, N.; Weber, C.; Newsome, S. Additive Manufacturing: Status and Opportunities; Science and Technology Policy Institute: Washington, DC, USA, 2012. [Google Scholar]
- Mackay, M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018, 62, 1549–1561. [Google Scholar] [CrossRef]
- Serdeczny, M.P.; Comminal, R.; Pedersen, D.B.; Spangenberg, J. Experimental and analytical study of the polymer melt flow through the hotend in material extrusion additive manufacturing. Addit. Manuf. 2020, 32, 100997. [Google Scholar]
- Behdani, B.; Senter, M.; Mason, L.; Leu, M.; Park, J. Numerical study on the temperature-dependent viscosity effect on the strand shape in extrusion-based additive manufacturing. J. Manuf. Mater. Process. 2020, 4, 46. [Google Scholar] [CrossRef]
- Bourell, D.L.; Leu, M.C.; Rosen, D.W. Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing; The University of Texas at Austin: Austin, TX, USA, 2009; pp. 11–15. [Google Scholar]
- Lombardi, L.; Tammaro, D. Effect of polymer swell in extrusion foaming of low-density polyethylene. Phys. Fluids 2021, 33, 033104. [Google Scholar] [CrossRef]
- Polychronopoulos, N.D.; Papathanasiou, T.D. A study on the effect of drawing on extrudate swell in film casting. Appl. Rheol. 2015, 25, 1–7. [Google Scholar] [CrossRef]
- Tammaro, D.; Walker, C.; Lombardi, L.; Trommsdorff, U. Effect of extrudate swell on extrusion foam of polyethylene terephthalate. J. Cell. Plast. 2021, 57, 911–925. [Google Scholar] [CrossRef]
- Mezi, D.; Ausias, G.; Grohens, Y.; Férec, J. Numerical simulation and modeling of the die swell for fiber suspension flows. J. Non-Newton. Fluid Mech. 2019, 274, 104205. [Google Scholar] [CrossRef]
- Robertson, B.; Thompson, R.L.; McLeish, T.C.B.; Robinson, I. Theoretical prediction and experimental measurement of isothermal extrudate swell of monodisperse and bidisperse polystyrenes. J. Rheol. 2017, 61, 931–945. [Google Scholar] [CrossRef] [Green Version]
- Tammaro, D. Rheological characterization of complex fluids through a table-top 3D printer. Rheol. Acta 2022, 61, 761–772. [Google Scholar] [CrossRef]
- Gifford, W. Compensating for die swell in the design of profile dies. Polym. Eng. Sci. 2003, 43, 1657–1665. [Google Scholar] [CrossRef]
- Vlachopoulos, J. Die swell and melt fracture: Effects of molecular weight distribution. Rheol. Acta 1974, 13, 223–227. [Google Scholar] [CrossRef]
- Allain, C.; Cloitre, M. Experimental investigation and scaling law analysis of die swell in semi-dilute polymer solutions. J. Non-Newton. Fluid Mech. 1997, 73, 51–66. [Google Scholar] [CrossRef]
- Koopmans, R.J. Die swell–molecular structure model for linear polyethylene. J. Polym. Sci. Part A Polym. Chem. 1988, 26, 1157–1164. [Google Scholar] [CrossRef]
- Agassant, J.F.; Arda, D.R.; Combeaud, C.; Merten, A.; Muenstedt, H.; Mackley, M.R.; Robert, L.; Vergnes, B. Polymer processing extrusion instabilities and methods for their elimination or minimisation. Int. Polym. Process. 2006, 21, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.W.; Patten, T.W.; Finlayson, B.A. Collocation and galerkin finite element methods for viscoelastic fluid flow—II. Die swell problems with a free surface. Comput. Fluids 1979, 7, 285–293. [Google Scholar] [CrossRef]
- Karagiannis, A.; Hrymak, A.; Vlachopoulos, J. Three-dimensional extrudate swell of creeping Newtonian jets. AIChE J. 1988, 34, 2088–2094. [Google Scholar] [CrossRef]
- Bush, M.; Phan-Thien, N. Three dimensional viscous flows with a free surface: Flow out of a long square die. J. Non-Newton. Fluid Mech. 1985, 18, 211–218. [Google Scholar] [CrossRef]
- Comminal, R.; Pimenta, F.; Hattel, J.H.; Alves, M.A.; Spangenberg, J. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods. J. Non-Newton. Fluid Mech. 2018, 252, 1–18. [Google Scholar] [CrossRef]
- Al-Muslimawi, A.; Tamaddon-Jahromi, H.; Webster, M. Simulation of viscoelastic and viscoelastoplastic die-swell flows. J. Non-Newton. Fluid Mech. 2013, 191, 45–56. [Google Scholar] [CrossRef]
- Spanjaards, M.; Hulsen, M.; Anderson, P. Transient 3D finite element method for predicting extrudate swell of domains containing sharp edges. J. Non-Newton. Fluid Mech. 2019, 270, 79–95. [Google Scholar] [CrossRef]
- Tang, D.; Marchesini, F.H.; Cardon, L.; D’hooge, D.R. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios. Phys. Fluids 2019, 31, 093103. [Google Scholar] [CrossRef]
- Spanjaards, M.; Hulsen, M.; Anderson, P. Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows. J. Non-Newton. Fluid Mech. 2020, 282, 104310. [Google Scholar] [CrossRef]
- Spanjaards, M.; Peters, G.; Hulsen, M.; Anderson, P. Numerical study of the effect of thixotropy on extrudate swell. Polymers 2021, 13, 4383. [Google Scholar] [CrossRef] [PubMed]
- Azaiez, J.; Guenette, R.; Ait-Kadi, A. Entry flow calculations using multi-mode models. J. Non-Newton. Fluid Mech. 1996, 66, 271–281. [Google Scholar] [CrossRef]
- Tang, D.; Marchesini, F.H.; D’hooge, D.R.; Cardon, L. Isothermal flow of neat polypropylene through a slit die and its die swell: Bridging experiments and 3D numerical simulations. J. Non-Newton. Fluid Mech. 2019, 266, 33–45. [Google Scholar] [CrossRef]
- Mu, Y.; Zhao, G.; Wu, X.; Zhai, J. Finite-Element Simulation of Polymer Flow and Extrudate Swell Through Hollow Profile Extrusion Die with the Multimode Differential Viscoelastic Model. Adv. Polym. Technol. 2013, 32, E1–E19. [Google Scholar] [CrossRef]
- Béraudo, C.; Fortin, A.; Coupez, T.; Demay, Y.; Vergnes, B.; Agassant, J. A finite element method for computing the flow of multi-mode viscoelastic fluids: Comparison with experiments. J. Non-Newton. Fluid Mech. 1998, 75, 1–23. [Google Scholar] [CrossRef]
- Mitchell, M.K.; Hirt, D.E. Degradation of PLA fibers at elevated temperature and humidity. Polym. Eng. Sci. 2015, 55, 1652–1660. [Google Scholar] [CrossRef]
- Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 1982, 11, 69–109. [Google Scholar] [CrossRef]
- Larson, R.G. Constitutive Equations for Polymer Melts and Solutions: Butterworths Series in Chemical Engineering; Butterworth-Heinemann: Waltham, MA, USA, 2013. [Google Scholar]
- Hulsen, M.A.; van der Zanden, J. Numerical simulation of contraction flows using a multi-mode Giesekus model. J. Non-Newton. Fluid Mech. 1991, 38, 183–221. [Google Scholar] [CrossRef]
- Tsai, W.C.; Miller, G.H. Numerical simulations of viscoelastic flow in complex geometries using a multi-mode Giesekus model. J. Non-Newton. Fluid Mech. 2014, 210, 29–40. [Google Scholar] [CrossRef]
- Yao, M.; McKinley, G.H.; Debbaut, B. Extensional deformation, stress relaxation and necking failure of viscoelastic filaments. J. Non-Newton. Fluid Mech. 1998, 79, 469–501. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, F.; Alves, M. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 2017, 239, 85–104. [Google Scholar] [CrossRef]
- Pimenta, F.; Alves, M.A. rheoTool User Guide v.6.0. 2022. Available online: https://github.com/fppimenta/rheoTool/blob/master/doc/user_guide.pdf (accessed on 10 October 2022).
- Bellini, A. Fused Deposition of Ceramics: A Comprehensive Experimental, Analytical and Computational Study of Material Behavior, Fabrication Process and Equipment Design; Drexel University: Philadelphia, PA, USA, 2002. [Google Scholar]
- Go, J.; Schiffres, S.N.; Stevens, A.G.; Hart, A.J. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Osswald, T.A.; Puentes, J.; Kattinger, J. Fused filament fabrication melting model. Addit. Manuf. 2018, 22, 51–59. [Google Scholar] [CrossRef]
- Peng, F.; Vogt, B.D.; Cakmak, M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit. Manuf. 2018, 22, 197–206. [Google Scholar] [CrossRef]
3.1 | 1 | ||
1.2 | 0.3 | ||
1.2 | 1.1 | ||
6 | 0.75 |
T = 160 °C | (s) | (Pa · s) | |
---|---|---|---|
Mode 1 | 0.264 | 0.58 | 11,556 |
Mode 2 | 3.13 | 0.44 | 5244.4 |
Mode 3 | 0.0308 | 0.51 | 6943.7 |
Mode 4 | 0.002823 | 0.50 | 1122.9 |
T = 180 °C | (s) | (Pa·s) | |
Mode 1 | 0.0225 | 0.50 | 3124 |
Mode 2 | 0.191 | 0.67 | 2959 |
Mode 3 | 2.407 | 0.14 | 791.4 |
Mode 4 | 0.0023 | 0.50 | 860.2 |
T = 200 °C | (s) | (Pa·s) | |
Mode 1 | 0.0156 | 0.52 | 1394 |
Mode 2 | 0.126 | 0.68 | 907.6 |
Mode 3 | 1.547 | 0.10 | 149.8 |
Mode 4 | 0.00173 | 0.50 | 578.2 |
(kg/m ) | (mN/m) | (kg/m ) | (Pa·s) |
---|---|---|---|
1000 | 42 | 1.225 | 1.8 |
Temperature | Re | Wi | Ca |
---|---|---|---|
160 °C | 4.01 | 7.80 | 2.96 |
180 °C | 1.29 | 6.02 | 9.21 |
200 °C | 3.30 | 3.87 | 3.61 |
Mesh | # of Cells | # of Elements on |
---|---|---|
M1 | 1428 | 6 |
M2 | 5712 | 12 |
M3 | 22,848 | 24 |
M4 | 35,700 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosa, S.; Tammaro, D.; D’Avino, G. Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes. Micromachines 2023, 14, 329. https://doi.org/10.3390/mi14020329
De Rosa S, Tammaro D, D’Avino G. Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes. Micromachines. 2023; 14(2):329. https://doi.org/10.3390/mi14020329
Chicago/Turabian StyleDe Rosa, Stefano, Daniele Tammaro, and Gaetano D’Avino. 2023. "Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes" Micromachines 14, no. 2: 329. https://doi.org/10.3390/mi14020329
APA StyleDe Rosa, S., Tammaro, D., & D’Avino, G. (2023). Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes. Micromachines, 14(2), 329. https://doi.org/10.3390/mi14020329