Geometry–Dependent Magnetoelectric and Exchange Bias Effects of the Nano L–T Mode Bar Structure Magnetoelectric Sensor
Abstract
:1. Introduction
2. Mathematical Model Development of the ME Coefficient for the L–T Mode Bi–Layer Bar Structure
3. Investigation of the Exchange Bias Effect in the AFM/FM Bi-Layer
4. Results and Discussion
4.1. ME Characteristics of Terfenol–D and PZT Nano L–T Mode Bi-Layer Bar Structure
4.2. The Exchange Bias Effect in the PtMn/Terfenol–D and PtMn-Cr2O3 Bi-Layers
4.2.1. Exchange Bias Characteristics of the Terfenol–D/PtMn Structure
4.2.2. Exchange Bias Characteristics of the Terfenol–D/Cr2O3 Structure
4.3. The Demonstration of the Nano Tri–Layer PtMn/Terfenol–D/PZT Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenji, U. Chapter Ten—Magnetoelectric composite materials: A research and development case study. In Advanced Lightweight Multifunctional Materials; Pedro, C., Carlos, M.C., Senentxu, L.M., Eds.; Woodhead Publishing in Materials: Cambridge, UK, 2021; pp. 351–390. [Google Scholar]
- Liang, X.; Matyushov, A.; Hayes, P.; Schell, V.; Dong, C.; Chen, H.; He, Y.; Will-Cole, A.; Quandt, E.; Martins, P.; et al. Roadmap on Magnetoelectric Materials and Devices. Roadmap on Magnetoelectric Materials and Devices. IEEE Trans. Magn. 2021, 57, 1–57. [Google Scholar]
- Yao, W.; Jiamian, H.; Yuanhua, L.; Nan, C.W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar]
- Lawes, G.; Srinivasan, G. Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D 2011, 44, 243001. [Google Scholar] [CrossRef]
- Haribabu, P.; Venkateswarlu, A.; Shashank, P.; Jungho, R. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. ACT 2016, 5, 5010009. [Google Scholar]
- Treetep, S.; Thanatcha, S.; Rardchawadee, S. Investigation of Magnetoelectric Effect in the Bi-Layer Plate Structure. Solid State Phenom. 2018, 280, 9–14. [Google Scholar]
- Salinee, C.; Thanatcha, S.; Rardchawadee, S. A 1D Analysis of Nano Multiferroic Composite for the Novel Read Head Technology. Adv. Mat. Res. 2014, 1052, 149–154. [Google Scholar]
- Lam, K.H.; Lo, C.Y.; Dai, J.Y.; Chan, H.L.W.; Luo, H.S. Enhanced magnetoelectric effect in a stress-biased lead magnesium niobate-lead titanate single crystal/Terfenol–D alloy magnetoelectric sensor. J. Appl. Phys. 2011, 109, 024505. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Ping, L.; Yumei, W.; Jing, Q. The magnetostrictive material effects on magnetic field sensitivity for magnetoelectric sensor. J. Appl. Phys. 2012, 111, 07E503. [Google Scholar]
- Marian, V.; John, B.; Markys, G.C. A new magnetic recording read head technology based on the magneto-electric effect. J. Phys. D Appl. Phys 2007, 40, 5027–5033. [Google Scholar]
- Marian, V.; John, B.; Muniz, P.A.; Markys, G.C. Multiferroic magnetic recording read head technology for 1 Tbit/in2 and beyond. J. Appl. Phys. 2008, 103, 07F506. [Google Scholar]
- Treetep, S.; Rardchawadee, S. A Comparative Investigation of Magnetoelectric Characteristics of Nano Bi-Layer Bar and Plate Structures. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Singapore, 22–23 November 2019. [Google Scholar]
- Treetep, S.; Salinee, C.; Rardchawadee, S. Magnetoelectric coupling behavior in high frequency regime of the nano bi-layer L-T mode bar structure. In Proceedings of the ISPS 2020, Virtual, Online, 24–25 June 2020. [Google Scholar]
- Shuxiang, D.; Jie, F.L.; Dwight, V. Theory Analysis on Magnetoelectric Voltage Coefficients of the Terfoneol-D/PZT Composite Transducer. In International Conference on Intelligent Materials, 5th ed.; Virginia Tech: Blacksburg, VA, USA, 2003. [Google Scholar]
- Salinee, C.; Rardchawadee, S.; Hideki, T. A 1D study of antiferromagnetic operated on multiferroic composite in nano read head. Microsyst. Technol. 2017, 23, 5143–5147. [Google Scholar]
- Spetzler, B.; Bald, C.; Durdaut, P.; Reermann, J.; Kirchhof, C.; Teplyuk, A.; Meyners, D.; Quandt, E.; Höft, M.; Schmidt, G.; et al. Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization. Sci. Rep. 2021, 11, 5269. [Google Scholar] [CrossRef]
- Rekha, G.; Kotnala, R.K. A review on current status and mechanisms of room temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 2022, 57, 12710–12737. [Google Scholar]
- Nogués, J.; Ivanm, K.S. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Cristina, P.G.; Giorgio, S.; Antonio, F. 22—Single-phase composite and laminate multiferroics. In Magnetic, Ferroelectric, and Multiferroic Metal Oxides; Metal Oxides; Biljana, D.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 457–484. [Google Scholar]
- John, B.; Marian, V.; Markys, G.C. Composite multiferroics as magnetic field detectors: How to optimise magneto-electric coupling. Adv. Appl. Ceram. 2010, 109, 169–174. [Google Scholar]
- Kopyl, S.; Surmenev, R.; Surmeneva, M.; Fetisov, Y.; Kholkin, A. Magnetoelectric effect: Principles and applications in biology and medicine—A review. Mater. Today Bio 2021, 12, 100149. [Google Scholar] [CrossRef]
- Colussi, M.; Berto, F.; Razavi, S.M.J.; Ayatollahi, M.R. Experimental and numerical investigations of fracture behavior of magnetostrictive materials. Procedia Struct. Integr. 2017, 3, 153–161. [Google Scholar] [CrossRef]
- Guo, Q.; Cao, G.; Shen, I.Y. Measurements of Piezoelectric Coefficient d33 of Lead Zirconate Titanate Thin Films Using a Mini Force Hammer. J. Vib. Acoust. 2013, 135, 011003. [Google Scholar] [CrossRef] [Green Version]
- Jonas, D.C.; Arne, V.; Medjid, A.; Kristiaan, T.; Bartel, V.W. Modelling exchange bias with Mumax3. J. Phys. D: Appl. Phys. 2016, 49, 435001. [Google Scholar]
- Zhang, D.G.; Li, M.H.; Zhou, H.M. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials. AIP Adv. 2015, 5, 107201. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Brian, D.F.; Marina, E.D.; Dodrigo, U.C.; Gregory, P.C.; Abdon, E.S. Exchange stiffness influence on Terfenol–D magnetic states. Multifunct. Mater. 2018, 1, 014001. [Google Scholar]
- Rakibul, K.A. Magnetic Properties of Ferromagnetic and Antiferromagnetic Materials and Low-Dimensional Materials. Ph.D. Thesis, University of California, Riverside, CA, USA, September 2021. [Google Scholar]
- Partha, H.; Pradip, B.; Saurav, D.; Sourish, B.; Dipankar, C. Enhancement of magnetic anisotropy in mechanically attrited Cr2O3 nanopaticles. J. Magn. Magn. Mater. 2012, 324, 1425–1430. [Google Scholar]
- Umetsu, R.Y.; Sakuma, A.; Fukamichi, K. Magnetic anisotropy energy of antiferromagnetic L 1 0-tpye equiatomic Mn alloys. Appl. Phys. Lett. 2006, 89, 052504. [Google Scholar] [CrossRef]
- Treetep, S.; Salinee, C.; Rardchawadee, S. Mathematical modeling of the magnetoelectric effect of the nano bi-layer L-T mode bar structure in high frequency regime. Microsyst. Technol. 2021, 27, 2447–2452. [Google Scholar]
- We Need a Boost in HDD Areal Density! Available online: https://www.forbes.com/sites/tomcoughlin/2022/09/18/we-need-a-boost-in-hdd-areal-density/?sh=257533ad5f63 (accessed on 3 December 2022).
- Archived: What is SATA, SATA II, and SATA III, and Which Controllers Have Support for It? Available online: https://knowledge.ni.com/Know_edgeArt_cleD_tails?id=kA00Z000000fz33SAA&l=en_US#:~:text=SATA%20II%20is%20a%20second,due%20to%208b%2F10b%20encoding (accessed on 1 December 2022).
- Mohanchandra, K.P.; Taehwan, L.; Andres, C.; Sergey, V.P.; Gregory, P.C. Polycrystalline Terfenol–D thin film grown at CMOS compatible temperature. AIP Adv. 2018, 8, 056404. [Google Scholar]
- How to Model Uncompensated Spins on the FM/AFM Interface in Mumax. Available online: https://www.researchgate.net/post/How_to_model_uncompensated_spins_on_the_FM_AFM_interface_in_Mumax2 (accessed on 9 May 2022).
- Florin, R.; Hartmut, Z. Exchange bias effect of ferro-/antiferromagnetic heterostructures. Tracts Mod. Phys. 2007, 227, 97–184. [Google Scholar]
- Nguyen, H.N.; Nguyen, T.T.V.; Nguyen, D.P.; Tran, T.H.; Nguyen, H.H.; Nguyen, H.L. Magnetic Properties of FePt Nanoparticles Prepared by Sonoelectrodeposition. J. Nanomater. 2012, 2012, 801240. [Google Scholar]
- Dwivedi, N.; Ott, A.K.; Sasikumar, K.; Dou, C.; Yeo, R.J.; Narayanan, B.; Sassi, U.; Fazio, D.D.; Soavi, G.; Dutta, T.; et al. Graphene overcoats for ultra-high storage density magnetic media. Nat. Commun. 2021, 12, 2854. [Google Scholar] [CrossRef]
- Mao, S.; Chen, Y.; Liu, F.; Chen, X.; Xu, B.; Lu, P.; Patwari, M.; Xi, H.; Chang, C.; Miller, B.; et al. Commercial TMR heads for hard disk drives: Characterization and externdibility at 300 Gbit/in2. IEEE Trans. Magn. 2006, 42, 97–102. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saengow, T.; Silapunt, R. Geometry–Dependent Magnetoelectric and Exchange Bias Effects of the Nano L–T Mode Bar Structure Magnetoelectric Sensor. Micromachines 2023, 14, 360. https://doi.org/10.3390/mi14020360
Saengow T, Silapunt R. Geometry–Dependent Magnetoelectric and Exchange Bias Effects of the Nano L–T Mode Bar Structure Magnetoelectric Sensor. Micromachines. 2023; 14(2):360. https://doi.org/10.3390/mi14020360
Chicago/Turabian StyleSaengow, Treetep, and Rardchawadee Silapunt. 2023. "Geometry–Dependent Magnetoelectric and Exchange Bias Effects of the Nano L–T Mode Bar Structure Magnetoelectric Sensor" Micromachines 14, no. 2: 360. https://doi.org/10.3390/mi14020360
APA StyleSaengow, T., & Silapunt, R. (2023). Geometry–Dependent Magnetoelectric and Exchange Bias Effects of the Nano L–T Mode Bar Structure Magnetoelectric Sensor. Micromachines, 14(2), 360. https://doi.org/10.3390/mi14020360