A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy
Abstract
:1. Introduction
2. Apparatus Description
2.1. Cryostat
2.2. Light Coupling
2.3. Multilayer Radiation Shielding Insert
2.4. Operation
3. Thermal Ansys and Measurement
3.1. Steady-State Thermal Analysis
3.2. Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cocker, T.L.; Peller, D.; Yu, P.; Repp, J.; Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 2016, 539, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Cocker, T.L.; Jelic, V.; Gupta, M.; Molesky, S.J.; Burgess, J.A.J.; Reyes, G.D.L.; Titova, L.V.; Tsui, Y.Y.; Freeman, M.R.; Hegmann, F.A. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 2013, 7, 620–625. [Google Scholar] [CrossRef]
- Jelic, V.; Iwaszczuk, K.; Nguyen, P.H.; Rathje, C.; Hornig, G.J.; Sharum, H.M.; Hoffman, J.R.; Freeman, M.R.; Hegmann, F.A. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 2017, 13, 591–598. [Google Scholar] [CrossRef]
- Vella, A.; Houard, J.; Arnoldi, L.; Tang, M.; Boudant, M.; Ayoub, A.; Normand, A.; Da Costa, G.; Hideur, A. High-resolution terahertz-driven atom probe tomography. Sci. Adv. 2021, 7, eabd7259. [Google Scholar] [CrossRef]
- Ammerman, S.E.; Jelic, V.; Wei, Y.; Breslin, V.N.; Hassan, M.; Everett, N.; Lee, S.; Sun, Q.; Pignedoli, C.A.; Ruffieux, P.; et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons. Nat. Commun. 2021, 12, 6794. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Morinaga, Y.; Imada, H.; Katayama, I.; Asakawa, K.; Yoshioka, K.; Kim, Y.; Takeda, J. Terahertz-Field-Driven Scanning Tunneling Luminescence Spectroscopy. ACS Photonics 2021, 8, 982–987. [Google Scholar] [CrossRef]
- Zurek, E.; Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys. 2019, 150, 050901. [Google Scholar] [CrossRef]
- Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 2020, 856, 1–78. [Google Scholar] [CrossRef]
- Wang, K.; Graf, D.; Li, L.; Wang, L.; Petrovic, C. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep. 2014, 4, 7328. [Google Scholar] [CrossRef]
- Sun, X.; Tang, F.; Shen, X.; Sun, W.; Zhao, W.; Han, Y.; Kan, X.; Cong, S.; Zhang, L.; Han, Z.; et al. Anisotropic giant magnetoresistance and Fermi surface topology in the layered compound YbBi2. Phys. Rev. B 2022, 105, 195114. [Google Scholar] [CrossRef]
- Meyer, G.D.; Ortiz, T.P.; Costello, A.L.; Brozik, J.A.; Kenney, J.W. Simple fiber optic coupled luminescence cryostat. Rev. Sci. Instrum. 2002, 73, 4369–4374. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Y.; Geng, T.; Zhang, J.; Feng, Q.; Xiang, K.; Chen, F.; Luo, X.; Sun, Y.; Meng, W.; et al. A variable-temperature scanning tunneling microscope operated in a continuous flow cryostat. Rev. Sci. Instrum. 2019, 90, 093702. [Google Scholar] [CrossRef] [PubMed]
- Naumov, P.G.; Lyubutin, I.S.; Frolov, K.V.; Demikhov, E.I. A closed-cycle cryostat for optical and Mössbauer spectroscopy in the temperature range 4.2–300 K. Instrum. Exp. Tech. 2010, 53, 770–776. [Google Scholar] [CrossRef]
- Micke, P.; Stark, J.; King, S.A.; Leopold, T.; Pfeifer, T.; Schmoger, L.; Schwarz, M.; Spiess, L.J.; Schmidt, P.O.; Crespo Lopez-Urrutia, J.R. Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications. Rev. Sci. Instrum. 2019, 90, 065104. [Google Scholar] [CrossRef]
- Gorbunov, A.V.; Demikhov, E.I.; Dorozhkin, S.I.; Meletov, K.P.; Timofeev, V.B. A helium cryostat with pumping of 3He vapors for optical investigations. Instrum. Exp. Tech. 2009, 52, 888–893. [Google Scholar] [CrossRef]
- Trofimov, V.N.; Chernikov, A.N.; Zaitsev-Zotov, S.V.; Dyuzhikov, I.N.; Shevlyuga, V.M.; Eltsov, K.N. An ultrahigh-vacuum nitrogen-free helium cryostat with small heat losses. Instrum. Exp. Tech. 2007, 50, 838–841. [Google Scholar] [CrossRef]
- Efimov, V.B.; Lokhov, A.V.; Mezhov-Deglin, L.P. A Combined Cryostat for Neutron and Optical Investigations. Instrum. Exp. Tech. 2018, 61, 459–466. [Google Scholar] [CrossRef]
- Hayashi, K.; Happo, N.; Hosokawa, S. A cryostat designed for x-ray fluorescence holography experiments down to 4 K. Rev. Sci. Instrum. 2021, 92, 083703. [Google Scholar] [CrossRef]
- Rezvani, S.J.; Di Gioacchino, D.; Tofani, S.; D’Arco, A.; Ligi, C.; Lupi, S.; Gatti, C.; Cestelli Guidi, M.; Marcelli, A. A cryogenic magneto-optical device for long wavelength radiation. Rev. Sci. Instrum. 2020, 91, 075103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hou, Y.; Feng, Q.; Dong, H.; Lu, Q. High-Temperature (940 °C) furnace in 18/20 T cold bore magnet. Cryogenics 2018, 89, 119–124. [Google Scholar] [CrossRef]
- Suman, N.; Siddiquee, A.N.; Kar, S. Thermal shield of the zero-boil-off cryostat for a 1.5T magnetic resonance imaging magnet. Cryogenics 2021, 116, 103301. [Google Scholar] [CrossRef]
- Santra, P.; Bedakihale, V.; Ranganath, T. Thermal structural analysis of SST-1 vacuum vessel and cryostat assembly using ANSYS. Fusion Eng. Des. 2009, 84, 1708–1712. [Google Scholar] [CrossRef]
- Peng, Y. Research of Thermal Analysis Collaboratively Using ANSYS Workbench and SolidWorks Simulation. Appl. Mech. Mater. 2011, 127, 262–266. [Google Scholar]
- Zhou, H.; Wang, Z.; Hou, Y.; Lu, Q. A compact high field magnetic force microscope. Ultramicroscopy 2014, 147, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Guo, Y.; Hou, Y.; Lu, Q. Atomic resolution scanning tunneling microscope imaging up to 27 T in a water-cooled magnet. Nano Res. 2015, 8, 3898–3904. [Google Scholar] [CrossRef]
- Schwarz, A.; Wiesendanger, R. Magnetic sensitive force microscopy. Nano Today 2008, 3, 28–39. [Google Scholar] [CrossRef]
- Feng, Q.Y.; Jin, F.; Zhou, H.B.; Wang, L.F.; Meng, W.J.; Zhang, K.X.; Wang, J.H.; Zhang, J.; Hou, Y.B.; Lu, Q.Y.; et al. Induced Formation of Structural Domain Walls and Their Confinement on Phase Dynamics in Strained Manganite Thin Films. Adv. Mater. 2018, 30, 1805353. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Hou, Y.; Wang, J.; Zhang, J.; Feng, Q.; Wang, Z.; Meng, W.; Lu, Q.; Lu, Y. A piezoelectric rotatable magnetic force microscope system in a 10 T cryogen-free superconducting magnet. Rev. Sci. Instrum. 2022, 93, 093706. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Hou, Y.; Huang, Z.; Lu, Q.; Wu, W. Evolution and control of the phase competition morphology in a manganite film. Nat. Commun. 2015, 6, 8980. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, K.; Xie, C.; Feng, Q.; Wang, Z.; Dai, G.; Wang, J.; Zhang, J.; Meng, W.; Hou, Y.; Lu, Q.; et al. A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy. Micromachines 2023, 14, 378. https://doi.org/10.3390/mi14020378
Xiang K, Xie C, Feng Q, Wang Z, Dai G, Wang J, Zhang J, Meng W, Hou Y, Lu Q, et al. A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy. Micromachines. 2023; 14(2):378. https://doi.org/10.3390/mi14020378
Chicago/Turabian StyleXiang, Kui, Caihong Xie, Qiyuan Feng, Ze Wang, Guangbin Dai, Jihao Wang, Jing Zhang, Wenjie Meng, Yubin Hou, Qingyou Lu, and et al. 2023. "A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy" Micromachines 14, no. 2: 378. https://doi.org/10.3390/mi14020378
APA StyleXiang, K., Xie, C., Feng, Q., Wang, Z., Dai, G., Wang, J., Zhang, J., Meng, W., Hou, Y., Lu, Q., & Lu, Y. (2023). A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy. Micromachines, 14(2), 378. https://doi.org/10.3390/mi14020378