Analytical Separated Neuro-Space Mapping Modeling Method of Power Transistor
Abstract
:1. Introduction
2. Model and Methods
2.1. Structure of the Separated Neuro-SM Model
2.2. Analytical Formulation for Neuro-SM Method
2.2.1. Analytical DC Signal Expression
2.2.2. Analytical AC Signal Expression
2.3. Sensitivity Analysis Expressions and Training Method
3. Experiment and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singya, P.K.; Kumar, N.; Bhatia, V. Mitigating NLD for wireless networks: Effect of nonlinear power amplifiers on future wireless communication networks. IEEE Microw. Mag. 2017, 18, 73–90. [Google Scholar] [CrossRef]
- Peng, L.; Yan, J.; Zhang, Z.; Zhang, G. An Efficient 24–30 GHz GaN-on-Si Driver Amplifier Using Synthesized Matching Networks. Micromachines 2023, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Nypwipwy, V.B.; Cavalheiro, R.; Dartora, C.A.; Lima, E.G. Power amplifier behavioral modeling based on Laguerre Polar-Volterra series with independent truncations. Int. J. RF Microw. Comput. -Aided Eng. 2022, 32, e23104. [Google Scholar] [CrossRef]
- Aaen, P.H.; Plá, J.A.; Wood, J. Modeling and Characterization of RF and Microwave Power FETs; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kabir, H.; Zhang, L.; Yu, M.; Aaen, P.H.; Wood, J.; Zhang, Q.J. Smart Modeling of Microwave Devices. IEEE Microw. Mag. 2010, 11, 105–118. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Gupta, K.C. Neural Networks for RF and Microwave Design; Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Feng, F.; Na, W.; Jin, J.; Zhang, J.; Zhang, W.; Zhang, Q.J. Artificial neural networks for microwave computer-aided design: The state of the art. IEEE Trans. Microw. Theory Tech. 2022, 70, 4597–4619. [Google Scholar] [CrossRef]
- Feng, F.; Na, W.; Jin, J.; Zhang, W.; Zhang, Q.J. ANNs for Fast Parameterized EM Modeling: The State of the Art in Machine Learning for Design Automation of Passive Microwave Structures. IEEE Microw. Mag. 2021, 22, 37–50. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Xu, A.; Tao, Z. A Novel Power Amplifier Model Based on Simplified Neural Network. J. Phys. Conf. Ser. 2021, 1827, 012028. [Google Scholar] [CrossRef]
- Çalışkan, A.; Güneş, F. 3D EM data-driven artifcial network-based design optimization of circular refectarray antenna with semi-elliptic rings for X-band applications. Microw. Opt. Technol. Lett. 2022, 64, 537–543. [Google Scholar] [CrossRef]
- Keke, H.; Li, S.; Deng, W.; Yu, Z.; Ma, L. Structure inference of networked system with the synergy of deep residual network and fully connected layer network. Neural Netw. 2022, 145, 288–299. [Google Scholar]
- Wang, J.; Kim, Y.H.; Ryu, J.; Jeong, C.; Choi, W.; Kim, D. Artifcial neural network-based compact modeling methodology for advanced transistors. IEEE Trans. Electron. Devices 2021, 68, 1318–1325. [Google Scholar] [CrossRef]
- Calik, N.; Güneş, F.; Koziel, S.; Pietrenko-Dabrowska, A.; Belen, M.A.; Mahouti, P. Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates. Sci. Rep. 2023, 13, 1445. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, Y.; Liu, W.; Liu, G.; Shi, W. A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components. Photonics 2022, 9, 960. [Google Scholar] [CrossRef]
- Li, S.L.; Li, S.P.; Gao, J.J. Neural-space mapping-based large-signal modeling for MOSFET. Int. J. RF Microw. Comput.-Aided Eng. 2011, 21, 353. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, F.; Gongal-Reddy, V.M.R.; Zhang, J.; Yan, S.; Ma, J.; Zhang, Q.J. Space Mapping Approach to Electromagnetic Centric Multiphysics Parametric Modeling of Microwave Components. IEEE Trans. Microw. Theory Tech. 2018, 66, 3169–3185. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Feng, F.; Zhang, W.; Zhang, Q.J. Space Mapping Technique Using Decomposed Mappings for GaN HEMT Modeling. IEEE Trans. Microw. Theory Tech. 2020, 68, 3318–3341. [Google Scholar] [CrossRef]
- Wu, H.F.; Cheng, Q.F.; Yan, S.X.; Zhang, Q.J.; Ma, J. Transistor model building for a microwave power heterojunction bipolar transistor. IEEE Microw. Mag. 2015, 16, 85–92. [Google Scholar] [CrossRef]
- Shi, W.; Gao, J.; Cao, Y.; Yu, Y.; Liu, P.; Ma, Y.; Ni, C.; Yan, S. Gain characteristics estimation of heteromorphic RFID antennas using neuro-space mapping. IET Microw. Antennas Propag. 2020, 14, 1555–1565. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.J.; Yagoub, M.C.E.; Ding, R.T.; Zhang, Q.J. Neuro-space mapping technique for nonlinear device modeling and large-signal simulation. In Proceedings of the 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, USA, 8–13 June 2003; pp. 173–176. [Google Scholar]
- Zhang, L.; Xu, J.J.; Yagoub, M.C.E.; Ding, R.T.; Zhang, Q.J. Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microw. Theory Tech. 2005, 53, 2752–2767. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Q.; Liu, K.; Ma, Y.; Peng, B.; Yan, S. A novel dynamic neuro-space mapping approach for nonlinear microwave device modeling. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 131–133. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, J.; Li, Z.; Liu, W.; Pan, L.; Wu, H.; Liu, D. A general neuro-space mapping technique for microwave device modeling. Eurasip. J. Wirel. Commun. Netw. 2018, 2018, 37. [Google Scholar] [CrossRef]
- Yan, S.; Jin, X.; Zhang, Y.; Shi, W.; Wen, J. Neuro-space mapping modeling for packaged transistors. Math. Probl. Eng. 2018, 8, 1–9. [Google Scholar]
- Yan, S.; Jin, X.; Zhang, Y.; Shi, W.; Wen, J. Accurate large-signal modeling using neuro-space mapping for power transistors. IEICE Electron. Expr. 2018, 15, 20180342. [Google Scholar] [CrossRef]
Model Type | Hidden Neurons in Input Mapping | Hidden Neurons in Output Mapping | Training Error | Test Error |
---|---|---|---|---|
Coarse Model | 8.77% | 8.82% | ||
Existing Model 1 | 30 | 2.83% | 2.81% | |
Existing Model 2 | 15 | 15 | 2.21% | 2.35% |
Proposed Model | 5 | 12 | 1.18% | 1.21% |
Model Type | ||||
---|---|---|---|---|
Coarse Model (%) | 4.11 | 11.52 | 4.68 | 4.61 |
Existing Model 1 (%) | 2.74 | 7.77 | 3.67 | 4.09 |
Existing Model 2 (%) | 2.15 | 6.04 | 3.58 | 3.79 |
Proposed Model (%) | 0.82 | 2.11 | 2.28 | 2.59 |
Data | Circuit-Based Model | Proposed Model | ||
---|---|---|---|---|
20 Hidden Neurons | 30 Hidden Neurons | 20 Hidden Neurons | 30 Hidden Neurons | |
10 sets | 12.7 s | 13.8 s | 1.5 s | 1.9 s |
30 sets | 62.3 s | 71.2 s | 5.8 s | 7.2 s |
50 sets | 79.7 s | 84.4 s | 6.7 s | 10.1 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, T.; Yan, S.; Wang, J. Analytical Separated Neuro-Space Mapping Modeling Method of Power Transistor. Micromachines 2023, 14, 426. https://doi.org/10.3390/mi14020426
Wang X, Li T, Yan S, Wang J. Analytical Separated Neuro-Space Mapping Modeling Method of Power Transistor. Micromachines. 2023; 14(2):426. https://doi.org/10.3390/mi14020426
Chicago/Turabian StyleWang, Xu, Tingpeng Li, Shuxia Yan, and Jian Wang. 2023. "Analytical Separated Neuro-Space Mapping Modeling Method of Power Transistor" Micromachines 14, no. 2: 426. https://doi.org/10.3390/mi14020426
APA StyleWang, X., Li, T., Yan, S., & Wang, J. (2023). Analytical Separated Neuro-Space Mapping Modeling Method of Power Transistor. Micromachines, 14(2), 426. https://doi.org/10.3390/mi14020426