Analytical and Physical Investigation on Source Resistance in InxGa1−xAs Quantum-Well High-Electron-Mobility Transistors
Abstract
:1. Introduction
2. Analytical Model for RS
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cahoon, N.; Srinivasan, P.; Guarin, F. 6G Roadmap for Semiconductor Technologies: Challenges and Advances. In Proceedings of the IEEE International Reliability Physics Symposium, Dallas, TX, USA, 27–31 March 2022. [Google Scholar]
- Ikram, M.; Sultan, K.; Lateef, M.F.; Alqadami, A.S.M. A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics 2022, 11, 169. [Google Scholar] [CrossRef]
- Cherry, S. Edholm’s law of bandwidth. IEEE Spectr. 2004, 41, 7. [Google Scholar] [CrossRef]
- Jo, H.-B.; Yun, S.-W.; Kim, J.G.; Yun, D.-Y.; Lee, I.G.; Kim, D.-H.; Kim, T.-W.; Kim, S.-K.; Yun, J.; Kim, T.; et al. Lg = 19 nm In0.8Ga0.2As composite channel HEMTs with fT = 738 GHz and fmax = 492 GHz. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 12–18 December 2020. [Google Scholar]
- Cooke, C.M.; Leong, K.M.K.H.; Zamora, A.; Gorospe, B.S.; Mei, X.B.; Kangaslahti, P.; Schlecht, E.; Ogut, M.; Goncharenko, Y.; Reising, S.C.; et al. A 670 GHz Integrated InP HEMT Direct-Detection Receiver for the Tropospheric Water and Cloud Ice Instrument. IEEE Trans. Electron Devices 2021, 11, 566. [Google Scholar] [CrossRef]
- Leuther, A.; Koch, S.; Tessmann, A.; Kallfass, I.; Merkle, T.; Massler, H.; Loesch, R.; Schlechtweg, M.; Saito, S.; Ambacher, O. 20 NM metamorphic HEMT WITH 660 GHZ FT. In Proceedings of the International Conference on Indium Phosphide and Related Materials, Berlin/Heidelberg, Germany, 22–26 May 2011. [Google Scholar]
- Yun, S.-W.; Jo, H.-B.; Yoo, J.-H.; Park, W.-S.; Jeong, H.-S.; Choi, S.-M.; Kim, H.-J.; George, S.; Beak, J.-M.; Lee, I.-G.; et al. InxGa1−xAs quantum-well high-electron-mobility transistors with a record combination of fT and fmax: From the mobility relevant to ballistic transport regimes. In Proceedings of the IEEE Electron Devices Meeting, San Francisco, CA, USA, 11–16 December 2021. [Google Scholar]
- Takahashi, T.; Kawano, Y.; Makiyama, K.; Shiba, S.; Sato, M.; Nakasha, Y.; Hara, N. Enhancement of fmax to 910 GHz by Adopting Asymmetric Gate Recess and Double-Side-Doped Structure in 75-nm-Gate InAlAs/InGaAs HEMTs. IEEE Trans. Electron Devices 2017, 64, 89–95. [Google Scholar] [CrossRef]
- Tasker, P.J.; Hughes, B. Importance of source and drain resistance to the maximum f/sub T/ of millimeter-wave MODFETs. IEEE Electron. Device Lett. 1989, 10, 291–293. [Google Scholar] [CrossRef]
- Shinohara, K.; Yamashita, Y.; Endoh, A.; Watanabe, I.; Hikosaka, K.; Matsui, T.; Mimura, T.; Hiyamizu, S. 547-GHz f/sub t/ In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As HEMTs with reduced source and drain resistance. IEEE Electron. Device Lett. 2004, 25, 241–243. [Google Scholar] [CrossRef]
- Chang, E.-Y.; Kuo, C.-I.; Hsu, H.-T.; Chiang, C.-Y.; Miyamoto, Y. InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications. Appl. Phys. Express 2013, 6, 034001. [Google Scholar] [CrossRef]
- Jo, H.-B.; Yun, S.-W.; Kim, J.-G.; Baek, J.-M.; Lee, I.-G.; Kim, D.-H.; Kim, T.-W.; Kim, S.-K.; Yun, J.; Kim, T.; et al. Sub-30-nm In0.8Ga0.2As Composite-Channel High-Electron-Mobility Transistors With Record High-Frequency Characteristics. IEEE Trans. Electron. Devices 2021, 68, 2010–2016. [Google Scholar] [CrossRef]
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zhou, J.; Liu, P.-H.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process. IEEE Electron. Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Yun, D.-Y.; Jo, H.-B.; Son, S.-W.; Baek, J.-M.; Lee, J.-H.; Kim, T.-W.; Kim, D.-H.; Tsutsumi, T.; Sugiyama, H.; Matsuzaki, H. Lg=87 nm InAlAs/InGaAs High-Electron- Mobility Transistors With a g m_max of 3 S/mm and fT of 559 GHz. IEEE Electron. Device Lett. 2018, 39, 1640–1643. [Google Scholar]
- Crook, A.M.; Lind, E.; Griffith, A.; Rodwell, W.M.J. Low resistance, nonalloyed Ohmic contacts to InGaAs. Appl. Phys. Lett. 2007, 91, 192114. [Google Scholar] [CrossRef]
- Waldron, N.; Kim, D.-H.; del Alamo, J.A. A self-aligned InGaAs HEMT architecture for logic applications. IEEE Trans. Electron. Devices 2010, 57, 297–304. [Google Scholar] [CrossRef]
- Moran, D.A.J.; McLelland, H.; Elgaid, K.; Whyte, G.; Stanley, C.R.; Thayne, I. 50-nm Self-Aligned and “Standard” T-gate InP pHEMT Comparison: The Influence of Parasitics on Performance at the 50-nm Node. IEEE Trans. Electron. Devices 2006, 53, 2920–2925. [Google Scholar] [CrossRef]
- Takahashi, T.; Sato, M.; Makiyama, K.; Hirose, T.; Hara, N. InAlAs/InGaAs HEMTs with Minumum Noise Figure of 1.0dB AT 94 GHz. In Proceedings of the IEEE 19th International Conference on Indium Phosphide & Related Materials, Matsue, Japan, 14–18 May 2007. [Google Scholar]
- Jeong, J.; Kim, S.K.; Kim, J.M.; Geum, D.-M.; Lee, J.; Park, S.-Y.; Kim, S. 3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D intergrated highly scalable quantum computing systems. In Proceedings of the IEEE Symposium on VLSI Technology and Circuits, Honolulu, HI, USA, 12–17 June 2022. [Google Scholar]
- Feuer, M.D. Two-layer model for source resistance in selectively doped heterojunction transistors. IEEE Trans. Electron. Devices 1985, 32, 7–11. [Google Scholar] [CrossRef]
- Azzam, W.J.; Del Alamo, J.A. An all-electrical floating-gate transmission line model technique for measuring source resistance in heterostructure field-effect transistors. IEEE Trans. Electron. Devices 1990, 37, 2105–2107. [Google Scholar] [CrossRef] [Green Version]
BCs | for x = −Lgs | = 0 for −Lgs < x < 0 | = for x = ∞ |
0−) | 0−) | ||
Region-I | Region-II | ||
− & are eigenvalues of − are their corresponding eigenvectors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, J.-H.; Lee, I.-G.; Tsutsumi, T.; Sugiyama, H.; Matsuzaki, H.; Lee, J.-H.; Kim, D.-H. Analytical and Physical Investigation on Source Resistance in InxGa1−xAs Quantum-Well High-Electron-Mobility Transistors. Micromachines 2023, 14, 439. https://doi.org/10.3390/mi14020439
Yoo J-H, Lee I-G, Tsutsumi T, Sugiyama H, Matsuzaki H, Lee J-H, Kim D-H. Analytical and Physical Investigation on Source Resistance in InxGa1−xAs Quantum-Well High-Electron-Mobility Transistors. Micromachines. 2023; 14(2):439. https://doi.org/10.3390/mi14020439
Chicago/Turabian StyleYoo, Ji-Hoon, In-Geun Lee, Takuya Tsutsumi, Hiroki Sugiyama, Hideaki Matsuzaki, Jae-Hak Lee, and Dae-Hyun Kim. 2023. "Analytical and Physical Investigation on Source Resistance in InxGa1−xAs Quantum-Well High-Electron-Mobility Transistors" Micromachines 14, no. 2: 439. https://doi.org/10.3390/mi14020439
APA StyleYoo, J. -H., Lee, I. -G., Tsutsumi, T., Sugiyama, H., Matsuzaki, H., Lee, J. -H., & Kim, D. -H. (2023). Analytical and Physical Investigation on Source Resistance in InxGa1−xAs Quantum-Well High-Electron-Mobility Transistors. Micromachines, 14(2), 439. https://doi.org/10.3390/mi14020439