Fabrication and Characterization of Acicular Micro-Textured Copper Sheet Device for Low-Temperature Heat Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Processing for Acicular Micro-Texturing
2.2. FT-IR Spectroscopy
2.3. Heat Radiation Experiment from Device to Objective Plate
2.4. Measurement Setup on the Surface Temperature of Device
3. Results
3.1. Microstructure of Acicular Microtextures
3.2. Geometric Characterization on the LL-Specimen
3.3. Transmittance Spectrum by FT-IR Analysis
3.4. Heat Radition from Acicular Textured Device to Black-Colored PC Plates
3.5. Reduction in Surface Temeprature on the Microtextured Device
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonga, C.; Shen, J.; Yu, Y.; Wang, K.; Tu, Z. A novel radiator structure for enhanced heat transfer used in PEM fuel cell vehicle. Int. J. Heat Mass Transf. 2020, 157, 119926. [Google Scholar] [CrossRef]
- SINDA. Lidar Heat Dissipation. Available online: https://www.sindathermal.com/info/lidar-heat-dissipation-64450855.html (accessed on 13 December 2022).
- Zhang, Y.; Li, Q.; Zhou, H. Emission and absorption of thermal radiation. In Theory and Calculation of Heat Transfer in Furnaces; Elsevier: London, UK, 2016; pp. 45–74. [Google Scholar]
- Ganji, D.D.; Sabzehmeidani, Y.; Sedghiamiri, A. Nonlinear Systems in Heat Transfer; Elsevier: London, UK, 2018. [Google Scholar]
- Bhatia, S.C. Solar radiations. In Advanced Renewable Energy Systems; Woodhead Publishing: New Delhi, India, 2015. [Google Scholar]
- Pritchard, G.E. Heating. In Plant Engineer’s Reference Book, 2nd ed.; Elsevier: London, UK, 2013. [Google Scholar]
- Bergman, T.L. Active daytime radiative cooling using spectrally selective surfaces for air conditioning and refrigeration. Sol. Energy 2018, 174, 16–23. [Google Scholar] [CrossRef]
- Badino, M. Plank’s Theory of Radiation; Springer: New York, NY, USA, 2015. [Google Scholar]
- Li, W.; Fan, S. Nano-photonic control of thermal radiation for energy applications. Opt. Express 2018, 26, 15995–16021. [Google Scholar] [CrossRef]
- Chen, K.; Thang, D.D.; Ishii, S.; Sugavaneshwa, R.P.; Nagao, T. Selective patterned growth of ZnO nanowires/nanosheets and their photoluminescence properties. Opt. Mater. Express 2015, 5, 353. [Google Scholar] [CrossRef]
- Tian, Y.; Ghanekar, A.; Ricci, M.; Hyde, M.; Gregory, O.; Zheng, Y. A Review of tunable wavelength selectivity of metamaterials in near-field and far-field radiative thermal transport. Materials 2018, 11, 862. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Han, T.; Zheng, X.; Li, J.; Li, B.; Fan, S.; Qiu, C.-W. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 2021, 6, 488–507. [Google Scholar] [CrossRef]
- Kohiyama, A.; Shimizu, M.; Yugami, H. Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems. Appl. Phys. Express 2016, 9, 112302. [Google Scholar] [CrossRef] [Green Version]
- Okitusmo, Co., Ltd. Development of Net Heatsink Type Thermal Emitter Materials; Res. Rep. Supporting Industry, METI: Tokyo, Japan, 2013. [Google Scholar]
- Shubina, T.V.; Ivanov, S.V.; Jmerik, V.N.; Solnyshkov, D.D.; Vekshin, V.A.; Kop’ev, P.A.; Vasson, A.; Leymarie, J.; Kavokin, A.; Amano, H.; et al. Mie resonances, infrared emission, and the bad gap of InN. Phys. Rev. Lett. 2004, 92, 117407. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Alonso, J.M.; Mandviwala, T.; Alda, J.; Lail, B.; Boreman, G. Infrared antenna metrology. In Proceedings of the SPIE on Electro-Optical and Infrared Systems, Technology and Applications II, Bruges, Belgium, 11 October 2005. [Google Scholar]
- Pal, U. Designing Antireflecting Microstructures for Infrared Applications. COMSOL Blog. Available online: https://www.comsol.com/blogs/designing-antireflecting-microstructures-for-infrared-applications/ (accessed on 26 January 2023).
- Aizawa, T.; Nakata, H.; Nasu, T. Manufacturing and characterization of acicular Fe-Ni micro-textured heat-transferring sheets. In Proceedings of the 5th World Congress on Micro and Nano Manufacturing WCMNM 2022, Leuven, Belgium, 19–22 September 2022; pp. 277–281. [Google Scholar]
- Aizawa, T.; Ebina, N.; Nakata; Nasu, T. Heat Transportation Device. Japanese Patent 2023. (to be issued). [Google Scholar]
- Zhang, T.; Wang, Z.; Wang, Y.; Chen, Z. Experimental study on the mechanical properties of oxygen-free copper used in high energy physics detectors and accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 935, 8–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aizawa, T.; Nakata, H.; Nasu, T. Fabrication and Characterization of Acicular Micro-Textured Copper Sheet Device for Low-Temperature Heat Radiation. Micromachines 2023, 14, 507. https://doi.org/10.3390/mi14030507
Aizawa T, Nakata H, Nasu T. Fabrication and Characterization of Acicular Micro-Textured Copper Sheet Device for Low-Temperature Heat Radiation. Micromachines. 2023; 14(3):507. https://doi.org/10.3390/mi14030507
Chicago/Turabian StyleAizawa, Tatsuhiko, Hiroki Nakata, and Takeshi Nasu. 2023. "Fabrication and Characterization of Acicular Micro-Textured Copper Sheet Device for Low-Temperature Heat Radiation" Micromachines 14, no. 3: 507. https://doi.org/10.3390/mi14030507
APA StyleAizawa, T., Nakata, H., & Nasu, T. (2023). Fabrication and Characterization of Acicular Micro-Textured Copper Sheet Device for Low-Temperature Heat Radiation. Micromachines, 14(3), 507. https://doi.org/10.3390/mi14030507