Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network
Abstract
:1. Introduction
2. Modified Impact Ionization Coefficient
2.1. Ionization Coefficient of 2D Drift Region
2.2. Empirical Models for the Impact Ionization Coefficient
3. Deep Neural Network for Impact Ionization Coefficient Prediction
4. Simulation and Verification
4.1. Dataset and Preprocessing
4.2. Predicted Results for the Impact Ionization Coefficient
4.3. Comparison of Running Times
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Li, Z.; Yuan, Z.; Wang, R.; Shu, L.; Wang, T.; Qiao, M.; Wang, Z.; Li, Z.; Zhang, B. Total-ionizing-dose radiation-induced dual-channel leakage current at unclosed edge termination for high voltage SOI LDMOS. IEEE Trans. Electron Devices 2021, 68, 2861–2866. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, S.; Yi, B.; Huang, H.; Wang, Z.; Zhang, G. A Lateral Power p-Channel Trench MOSFET Improved by Variation Vertical Doping. IEEE Trans. Electron Devices 2021, 68, 2138–2141. [Google Scholar] [CrossRef]
- Qiao, M.; Li, Y.; Yuan, Z.; Liang, L.; Li, Z.; Zhang, B. A Novel Ultralow R ON, sp Triple RESURF LDMOS With Sandwich npn Layer. IEEE Trans. Electron Devices 2020, 67, 5605–5612. [Google Scholar] [CrossRef]
- Houadef, A.; Djezzar, B. Process and performance optimization of Triple-RESURF LDMOS with Trenched-Gate. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22755. [Google Scholar] [CrossRef]
- Anvarifard, M.K. Successfully controlled potential distribution in a novel high-voltage and high-frequency SOI MESFET. IEEE Trans. Device Mater. Reliab. 2016, 16, 631–637. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.-F.; Pan, D.Z.; Yang, K.-M.; Lian, X.-J.; Yao, J.-F. Effective doping concentration theory: A new physical insight for the double-RESURF lateral power devices on SOI substrate. IEEE Trans. Electron Devices 2018, 65, 648–654. [Google Scholar] [CrossRef]
- Guo, J.; Li, P.; Wu, H.; Hu, S. An Analytical Model of the Electric Field Distribution and Breakdown Voltage for Stepped Compound Buried Layer SOI LDMOS. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Bai, T.; Kuo, J.B. Modeling of breakdown voltage for SOI trench LDMOS device based on conformal mapping. IEEE Trans. Electron Devices 2018, 65, 1056–1062. [Google Scholar] [CrossRef]
- Dong, Z.; Duan, B.; Li, M.; Wang, Y.; Yang, Y. A breakdown model of LDMOS optimizing lateral and vertical electric field to improve breakdown voltage by multi-ring technology. Solid-State Electron. 2020, 166, 107775. [Google Scholar] [CrossRef]
- Sahoo, J.; Mahapatra, R. Analytical breakdown voltage model for a partial SOI-LDMOS transistor with a buried oxide step structure. J. Comput. Electron. 2021, 20, 1711–1720. [Google Scholar] [CrossRef]
- Carrillo-Nunez, H.; Dimitrova, N.; Asenov, A.; Georgiev, V. Machine learning approach for predicting the effect of statistical variability in Si junctionless nanowire transistors. IEEE Electron Device Lett. 2019, 40, 1366–1369. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, T.; Friedrich, M.; Beuth, F.; Kowerko, D. Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks. J. Intell. Manuf. 2022, 33, 1099–1123. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, R.; Chen, W.; Ma, Y. Optical analog computing devices designed by deep neural network. Opt. Commun. 2020, 458, 124674. [Google Scholar] [CrossRef]
- Singh, V.K.; Lin, P.T.; Patel, N.; Lin, H.; Li, L.; Zou, Y.; Deng, F.; Ni, C.; Hu, J.; Giammarco, J.; et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014, 15, 014603. [Google Scholar] [CrossRef] [PubMed]
- Bankapalli, Y.S.; Wong, H.Y. TCAD Augmented Machine Learning for Semiconductor Device Failure Troubleshooting and Reverse Engineering. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Mehta, K.; Raju, S.S.; Xiao, M.; Wang, B.; Zhang, Y.; Wong, H.Y. Improvement of TCAD augmented machine learning using autoencoder for semiconductor variation identification and inverse design. IEEE Access 2020, 8, 143519–143529. [Google Scholar] [CrossRef]
- Sahoo, J.; Mahapatra, R. The effect of dual dummy gate in the drift region on the on-state performance of SOI-LDMOS transistor for power amplifier application. Silicon 2022, 14, 2039–2050. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv 2018. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Wang, W.; Danial, L.; Li, Y.; Herbelin, E.; Pikhay, E.; Roizin, Y.; Hoffer, B.; Wang, Z.; Kvatinsky, S. A memristive deep belief neural network based on silicon synapses. Nat. Electron. 2022, 5, 870–880. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Alawieh, M.B.; Zhang, M.; Zhang, J.; Pan, D.Z. An Efficient Automatic Structure Design Method of Silicon-on-Insulator Lateral Power Device Considering RESURF Constraint. IEEE Trans. Electron Devices 2021, 68, 4593–4597. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.Y. Prediction of FinFET current-voltage and capacitance-voltage curves using machine learning with autoencoder. IEEE Electron Device Lett. 2020, 42, 136–139. [Google Scholar] [CrossRef]
Structural Parameters | Range |
---|---|
ts | [0.4, 9] μm |
Ld | [10, 135] μm |
Nd | [1 × 1015, 2 × 1016] cm−3 |
tox | [0.4, 6.5] μm |
ln | [2, 14] μm |
Nn | [1 × 1020, 2 × 1021] cm−3 |
tn | [ts/3, ts/1.25] μm |
Lp | [3, 15] μm |
Pp | [1 × 1018, 2 × 1019] cm−3 |
Train | Test | |
---|---|---|
Dataset | 972 | 648 |
Running Time | MEDICI(s) | DNN(s) |
---|---|---|
Partial Depletion Case | 5.2 × 102 | 0.01 |
Full Depletion Case | 6.4 × 102 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Ma, L.; Shi, Y.; Zhang, J.; Liang, Y.; Zhang, J.; Wang, H.; Yao, Q.; Lin, H.; Li, M.; et al. Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network. Micromachines 2023, 14, 522. https://doi.org/10.3390/mi14030522
Cui J, Ma L, Shi Y, Zhang J, Liang Y, Zhang J, Wang H, Yao Q, Lin H, Li M, et al. Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network. Micromachines. 2023; 14(3):522. https://doi.org/10.3390/mi14030522
Chicago/Turabian StyleCui, Jingyu, Linglin Ma, Yuxian Shi, Jinan Zhang, Yuxiang Liang, Jun Zhang, Haidong Wang, Qing Yao, Haonan Lin, Mengyang Li, and et al. 2023. "Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network" Micromachines 14, no. 3: 522. https://doi.org/10.3390/mi14030522
APA StyleCui, J., Ma, L., Shi, Y., Zhang, J., Liang, Y., Zhang, J., Wang, H., Yao, Q., Lin, H., Li, M., Yao, J., Zhang, M., Chen, J., Li, M., & Guo, Y. (2023). Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network. Micromachines, 14(3), 522. https://doi.org/10.3390/mi14030522