State Recognition of Multi-Nozzle Electrospinning Based on Image Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Multi-Jet Image Processing
3.1. Image Preprocessing
3.1.1. ACE Algorithm
3.1.2. Threshold Processing
3.2. Hough Transform Edge Detection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Z.; Chen, H.; Wang, Q.; Kang, G.; Wang, X.; Li, W.; Liu, Y.; Zheng, G. High-performance multifunctional electrospun fibrous air filter for personal protection: A review. Sep. Purif. Technol. 2022, 302, 122175. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Jiang, Z.; Lu, T.; Xiong, R.; Huang, C. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 2022, 430, 132989. [Google Scholar] [CrossRef]
- He, J.; Liang, Y.; Shi, M.; Guo, B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 2020, 385, 123464. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Chen, Y.; Li, Y.; Zhou, W.; Xu, W.; Pang, L.; Fan, X.; Jiang, S. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, J.; Lu, T.; Tang, G.; Wu, S.; Ma, W.; Huang, C. Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chem. Eng. J. 2021, 404, 126347. [Google Scholar] [CrossRef]
- Ma, W.; Cao, W.; Lu, T.; Xiong, R.; Huang, C. Multifunctional nanofibrous membrane fabrication by a sacrifice template strategy for efficient emulsion oily wastewater separation and water purification. J. Environ. Chem. Eng. 2022, 10, 108908. [Google Scholar] [CrossRef]
- Cao, W.; Ma, W.; Lu, T.; Jiang, Z.; Xiong, R.; Huang, C. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning performance for complex oily wastewater remediation. J.Colloid Interface Sci. 2022, 608, 164–174. [Google Scholar] [CrossRef]
- Kim, S.J.; Shin, K.M.; Kim, S.I. The effect of electric current on the processing of nanofibers formed from poly(2-acrylamido-2-methyl-1-propane sulfonic acid). Scripta Mater. 2004, 51, 31–35. [Google Scholar]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Bending instability in electrospinning of nanofibers. J Appl. Phys. 2001, 89, 3018–3026. [Google Scholar] [CrossRef] [Green Version]
- Helgeson, M.E.; Grammatikos, K.N.; Deitzel, J.M.; Wagner, N.J. Theory and kinematic measurements of the mechanics of stable electrospun polymer jets. Polymer 2008, 49, 2924–2936. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zheng, G.; Wang, X.; Li, W.; Kang, G.; Chen, H.; Guo, S.; Liu, J. Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers. Micromachines 2019, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samatham, R.; Kim, K.J. Electric current as a control variable in the electrospinning process. Polym. Eng. Sci. 2006, 46, 954–959. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, K.; Jiang, J.; Wang, X.; Li, W.; Liu, Y.; Liu, J.; Zheng, G. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write. AIP Adv. 2018, 8, 015122. [Google Scholar] [CrossRef] [Green Version]
- Deitzel, J.M.; Kleinmeyer, J.D.; Hirvonen, J.K.; Tan, N.C.B. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 2001, 42, 8163–8170. [Google Scholar] [CrossRef]
- Kadomae, Y.; Sugimoto, M.; Taniguchi, T.; Koyama, K. Discharge Behaviors and Jet Profiles During Electrospinning of Poly(vinyl alcohol). Polym. Eng. Sci. 2010, 50, 1788–1796. [Google Scholar] [CrossRef]
- Choi, S.J.; Kong, C.S.; Han, D.H.; Kim, H.S. Online Measurement of Electrospinning Jet Velocity of Polyvinyl Alcohol. Int. Polym. Proc. 2016, 31, 285–291. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Mu, X.; Xin, B.; Lin, L. Investigation into Jet Motion and Fiber Properties Induced by Electric Fields in Melt Electrospinning. Ind. Eng. Chem. 2020, 59, 2163–2170. [Google Scholar] [CrossRef]
- Mieszczanek, P.; Robinson, T.M.; Dalton, P.D.; Hutmacher, D.W. Convergence of Machine Vision and Melt Electrowriting. Adv. Mater. 2021, 33, 2100519. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zheng, Y.; Xin, B.; Xu, Y. Coaxial Electrospinning: Jet Motion, Core–Shell Fiber Morphology, and Structure as a Function of Material Parameters. Ind. Eng. Chem. 2020, 59, 6301–6308. [Google Scholar] [CrossRef]
- Bidon, S.; Besson, O.; Tourneret, J.-Y. The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments. IEEE Signal Proc. Lett. 2008, 15, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Yang, X.; Wu, Z.; Zhu, X. Image Processing in Python, 1st ed.; Science Press: Beijing, China, 2020; pp. 233–237. [Google Scholar]
- Plutino, A.; Barricelli, B.R.; Casiraghi, E.; Rizzi, A. Scoping review on automatic color equalization algorithm. J. Electron. Imaging 2021, 30, 020901. [Google Scholar] [CrossRef]
- Jia, X. Python-Opencv from Basic to Proficient, 1st ed.; Tsinghua University Press: Beijing, China, 2021; pp. 111–112. [Google Scholar]
Number | Total Frames | Total Number of Cone Tips | Correct/Frame | Error/Frame | Accuracy Rate |
---|---|---|---|---|---|
1 | 193 | 3474 | 165 | 28 | 85.5% |
2 | 306 | 5508 | 265 | 41 | 86.6% |
3 | 682 | 12,276 | 597 | 85 | 87.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Jiang, J.; Wang, X.; Li, W.; Zheng, G. State Recognition of Multi-Nozzle Electrospinning Based on Image Processing. Micromachines 2023, 14, 529. https://doi.org/10.3390/mi14030529
Gao W, Jiang J, Wang X, Li W, Zheng G. State Recognition of Multi-Nozzle Electrospinning Based on Image Processing. Micromachines. 2023; 14(3):529. https://doi.org/10.3390/mi14030529
Chicago/Turabian StyleGao, Weiqi, Jiaxin Jiang, Xiang Wang, Wenwang Li, and Gaofeng Zheng. 2023. "State Recognition of Multi-Nozzle Electrospinning Based on Image Processing" Micromachines 14, no. 3: 529. https://doi.org/10.3390/mi14030529
APA StyleGao, W., Jiang, J., Wang, X., Li, W., & Zheng, G. (2023). State Recognition of Multi-Nozzle Electrospinning Based on Image Processing. Micromachines, 14(3), 529. https://doi.org/10.3390/mi14030529