Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Simulation Results
3.2. Optical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Zhao, Y.; Cao, L.; Jin, G. Three-dimensional display technologies in wave and ray optics: A review. Chin. Opt. Lett. 2014, 12, 060002. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xiao, D.; Li, N.-N.; Liu, C.; Wang, Q.-H. Holographic display system based on effective area expansion of SLM. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Hong, J.; Kim, Y.; Choi, H.-J.; Hahn, J.; Park, J.-H.; Kim, H.; Min, S.-W.; Chen, N.; Lee, B. Three-dimensional display technologies of recent interest: Principles, status, and issues. Appl. Opt. 2011, 50, H87–H115. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Yan, X.; Jiang, X.; Yan, Z.; Fan, F.; Li, P.; Chen, Z.; Chen, S. Integral imaging based light field display with holographic diffusor: Principles, potentials and restrictions. Opt. Express 2019, 27, 27441–27458. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Li, N.N.; Wang, D.; Chu, F.; Lee, S.D.; Zheng, Y.W.; Wang, Q.H. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci. Appl. 2022, 11, 188. [Google Scholar] [CrossRef]
- Sui, X.; He, Z.; Jin, G.; Chu, D.; Cao, L. Band-limited double-phase method for enhancing image sharpness in complex modulated computer-generated holograms. Opt. Express 2021, 29, 2597–2612. [Google Scholar] [CrossRef]
- Qi, Y.; Chang, C.; Xia, J. Speckleless holographic display by complex modulation based on double-phase method. Opt. Express 2016, 24, 30368–30378. [Google Scholar] [CrossRef]
- Gerchberg, R.W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Rundquist, A.; Efimov, A.; Reitze, D.H. Pulse shaping with the Gerchberg–Saxton algorithm. JOSA B 2002, 19, 2468–2478. [Google Scholar] [CrossRef]
- Yang, G.-z.; Dong, B.-z.; Gu, B.-y.; Zhuang, J.-y.; Ersoy, O.K. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: A comparison. Appl. Opt. 1994, 33, 209–218. [Google Scholar] [CrossRef]
- Peng, Y.; Choi, S.; Padmanaban, N.; Wetzstein, G. Neural holography with camera-in-the-loop training. ACM Trans. Graph. (TOG) 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Pégard, N.; Zhong, J.; Adesnik, H.; Waller, L. 3D computer-generated holography by non-convex optimization. Optica 2017, 4, 1306–1313. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.; Peng, Y.; Wetzstein, G. Optimizing image quality for holographic near-eye displays with michelson holography. Optica 2021, 8, 143–146. [Google Scholar] [CrossRef]
- Chakravarthula, P.; Peng, Y.; Kollin, J.; Fuchs, H.; Heide, F. Wirtinger holography for near-eye displays. ACM Trans. Graph. (TOG) 2019, 38, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.; Jo, Y.; Nam, S.-W.; Chen, C.; Lee, B. Optimization of computer-generated holograms featuring phase randomness control. Opt. Lett. 2021, 46, 4769–4772. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lee, B.; Li, N.-N.; Chae, M.; Wang, D.; Wang, Q.-H.; Lee, B. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt. Express 2021, 29, 15089–15103. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, J.; Cho, J.; Yoo, D.; Lee, B.; Lee, B. Deep neural network for multi-depth hologram generation and its training strategy. Opt. Express 2020, 28, 27137–27154. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef]
- Chen, J.-S.; Chu, D. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express 2015, 23, 18143–18155. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, L.; Jin, G. Computer-generated hologram with occlusion effect using layer-based processing. Appl. Opt. 2017, 56, F138–F143. [Google Scholar] [CrossRef]
- Kavaklı, K.; Itoh, Y.; Urey, H.; Akşit, K. Realistic Defocus Blur for Multiplane Computer-Generated Holography. arXiv 2022, arXiv:2205.07030. [Google Scholar]
Method | = 230 mm, = 10 mm | = 230 mm, = 30 mm | = 230 mm, = 50 mm |
---|---|---|---|
The proposed method | 48.9338 s | 47.5858 s | 48.8018 s |
The SGD method with complex loss function | 30.6387 s | 28.7206 s | 28.1467 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, J.; Yan, B.; Sang, X.; Zhong, C.; Li, H.; Qin, X.; Xiao, R.; Sun, Z.; Dong, Y.; Zhang, H. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction. Micromachines 2023, 14, 605. https://doi.org/10.3390/mi14030605
Quan J, Yan B, Sang X, Zhong C, Li H, Qin X, Xiao R, Sun Z, Dong Y, Zhang H. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction. Micromachines. 2023; 14(3):605. https://doi.org/10.3390/mi14030605
Chicago/Turabian StyleQuan, Jiale, Binbin Yan, Xinzhu Sang, Chongli Zhong, Hui Li, Xiujuan Qin, Rui Xiao, Zhi Sun, Yu Dong, and Huming Zhang. 2023. "Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction" Micromachines 14, no. 3: 605. https://doi.org/10.3390/mi14030605
APA StyleQuan, J., Yan, B., Sang, X., Zhong, C., Li, H., Qin, X., Xiao, R., Sun, Z., Dong, Y., & Zhang, H. (2023). Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction. Micromachines, 14(3), 605. https://doi.org/10.3390/mi14030605