Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dark Conditions
3.2. Under Light Irradiation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, Z.J.; Valenta, C.R.; Durgin, G.D. Optically Transparent Antennas: A Survey of Transparent Microwave Conductor Performance and Applications. IEEE Antennas Propag. Mag. 2021, 63, 27–39. [Google Scholar] [CrossRef]
- Magrini, T.; Bouville, F.; Lauria, A.; Le Ferrand, H.; Niebel, T.P.; Studart, A.R. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 2019, 10, 2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.Y.; Park, E.H.; Kim, K.H. Moiré-fringeless Transparent Conductive Films with a Random Serpentine Network of Medium-Field Electrospun, Chemically Annealed Silver Microfibres. Sci. Rep. 2019, 9, 11226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungureanu, V.I.; Miclea, R.C.; Korodi, A.; Silea, I. A novel approach against sun glare to enhance driver safety. Appl. Sci. 2020, 10, 3032. [Google Scholar] [CrossRef]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Chen, Z.Y.; Huang, H.T.; Chi, S. Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication. IEEE Photonics J. 2013, 5, 7901507. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, N.K.; Park, S.; Jeong, S.; Jeon, D.; Kang, Y.; Kim, T.; Kim, Y.S.; Han, I.K.; Kang, S.J. Highly transparent phototransistor based on quantum-dots and ZnO bilayers for optical logic gate operation in visible-light. RSC Adv. 2020, 10, 16404–16414. [Google Scholar] [CrossRef]
- Song, H.J.; Seo, M.H.; Choi, K.W.; Jo, M.S.; Yoo, J.Y.; Yoon, J.B. High-Performance Copper Oxide Visible-Light Photodetector via Grain-Structure Model. Sci. Rep. 2019, 9, 7334. [Google Scholar] [CrossRef] [Green Version]
- Yamazato, T.; Haruyama, S. Image sensor based visible light communication and its application to pose, position, and range estimations. IEICE Trans. Commun. 2014, E97.B, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Yasuda, T.; Fujita, K.; Tsutsui, T. Transparent image sensors using an organic multilayer photodiode. Adv. Mater. 2006, 18, 2230–2233. [Google Scholar] [CrossRef]
- Meng, R.; Jiang, Q.; Liu, D. Balancing efficiency and transparency in organic transparent photovoltaics. NPJ Flex. Electron. 2022, 6, 39. [Google Scholar] [CrossRef]
- Sin, D.H.; Kim, S.H.; Lee, J.; Lee, H. Modification of Electrode Interface with Fullerene-Based Self-Assembled Monolayer for High-Performance Organic Optoelectronic Devices. Micromachines 2022, 13, 1613. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Jeong, J.H.; Jung, E.Y.; Kim, T.Y.; Park, S.; Hong, J.A.; Lee, K.M.; Jeon, W.; Park, Y.; Kang, S.J. A visible-light phototransistor based on the heterostructure of ZnO and TiO2with trap-assisted photocurrent generation. RSC Adv. 2021, 11, 12051–12057. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, K.H.; Park, J.S.; Kang, S.J. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 19666–19671. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, L.; Zhou, Q.; Wang, J. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films. Sci. Rep. 2014, 4, 4268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Z.; Lai, H.C.; Wang, J.Y.; Chiang, W.H.; Chen, C.H. High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor. IEEE Electron Device Lett. 2015, 36, 44–46. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; Wang, Y.; Kik, P.G.; Brongersma, M.L. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 2019, 10, 4982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.; Hong, Y. Understanding the effect of semiconductor thickness on device characteristics in organic thin film transistors by way of two-dimensional simulations. Org. Electron. 2010, 11, 127–136. [Google Scholar] [CrossRef]
- Xu, M.; Nakamura, M.; Kudo, K. Thickness dependence of mobility of pentacene planar bottom-contact organic thin-film transistors. Thin Solid Film. 2008, 516, 2776–2778. [Google Scholar] [CrossRef]
- Shin, H.; Kim, D.Y. Rotating Gate-Driven Solution-Processed Triboelectric Transistors. Sensors 2022, 22, 3309. [Google Scholar] [CrossRef] [PubMed]
- Haneef, H.F.; Zeidell, A.M.; Jurchescu, O.D. Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 2020, 8, 759–787. [Google Scholar] [CrossRef]
- Basiricò, L.; Mattana, G.; Mas-Torrent, M. Editorial: Organic Electronics: Future Trends in Materials, Fabrication Techniques and Applications. Front. Phys. 2022, 10, 307. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M.I.; Lin, Y.; Campoy-Quiles, M.; et al. Doping Approaches for Organic Semiconductors. Chem. Rev. 2022, 122, 4420–4492. [Google Scholar] [CrossRef]
- Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. [Google Scholar] [CrossRef]
- Taheri, N.; Dinari, M.; Asgari, M. Recent Applications of Porous Organic Polymers Prepared via Friedel-Crafts Reaction under the Catalysis of AlCl3: A Review. ACS Appl. Polym. Mater. 2022, 4, 6288–6302. [Google Scholar] [CrossRef]
- Raghuwanshi, V.; Bharti, D.; Mahato, A.K.; Varun, I.; Tiwari, S.P. Semiconductor:polymer blend ratio dependent performance and stability in low voltage flexible organic field-effect transistors. Synth. Met. 2018, 236, 54–60. [Google Scholar] [CrossRef]
- Park, S.K.; Anthony, J.E.; Jackson, T.N. Solution-processed TIPS-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett. 2007, 28, 877–879. [Google Scholar] [CrossRef]
- Gunduz, B.; Yakuphanoglu, F. Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor. Sens. Actuators A Phys. 2012, 178, 141–153. [Google Scholar] [CrossRef]
- Jang, Y.; Jo, J.; Lee, S.H.; Kim, I.; Lee, T.M.; Woo, K.; Kwon, S.; Seok, J.Y. Achieving high-mobility pentacene thin-film transistors by reducing the trapping density between insulators and organic semiconductors. Mater. Lett. 2022, 329, 133197. [Google Scholar] [CrossRef]
- Al-Shawi, A.; Alias, M.; Sayers, P.; Mabrook, M.F. Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors. Micromachines 2019, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Park, J.H.; Lee, W.H.; Kim, H.H.; Park, Y.D. Tailoring the crystallinity of solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene via controlled solidification. Soft Matter 2019, 15, 7369–7373. [Google Scholar] [CrossRef]
- Müsse, A.; La Malfa, F.; Brunetti, V.; Rizzi, F.; De Vittorio, M. Flexible Enzymatic Glucose Electrochemical Sensor Based on Polystyrene-Gold Electrodes. Micromachines 2021, 12, 805. [Google Scholar] [CrossRef]
- Prime, D.; Paul, S. Electrical and morphological properties of polystyrene thin films for organic electronic applications. Vacuum 2010, 84, 1240–1243. [Google Scholar] [CrossRef]
- Raghuwanshi, V.; Bharti, D.; Mahato, A.K.; Varun, I.; Tiwari, S.P. Effect of TIPS-Pentacene: Polystyrene Blend Ratio on Electrical Performance and Stability of Solution Processed Organic Field-Effect Transistors. In Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE), Bengaluru, India, 17–19 December 2018. [Google Scholar] [CrossRef]
- Shin, H.; Lee, H.; Kim, B.; Zhang, X.; Bae, J.H.; Park, J. Effects of Blended Poly(3-hexylthiophene) and 6,13-bis(triisopropylsilylethynyl) pentacene Organic Semiconductors on the Photoresponse Characteristics of Thin-Film Transistors. J. Korean Inst. Met. Mater. 2022, 60, 198–205. [Google Scholar] [CrossRef]
- Lee, W.H.; Kwak, D.; Anthony, J.E.; Lee, H.S.; Choi, H.H.; Kim, D.H.; Lee, S.G.; Cho, K. The influence of the solvent evaporation rate on the phase separation and electrical performances of soluble acene-polymer blend semiconductors. Adv. Funct. Mater. 2012, 22, 267–281. [Google Scholar] [CrossRef]
- Zajaczkowska, H.; Veith, L.; Waliszewski, W.; Bartkiewicz, M.A.; Borkowski, M.; Sleczkowski, P.; Ulanski, J.; Graczykowski, B.; Blom, P.W.M.; Pisula, W.; et al. Self-Aligned Bilayers for Flexible Free-Standing Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 59012–59022. [Google Scholar] [CrossRef]
- Brixi, S.; Melville, O.A.; Boileau, N.T.; Lessard, B.H. The influence of air and temperature on the performance of PBDB-T and P3HT in organic thin film transistors. J. Mater. Chem. C 2018, 6, 11972–11979. [Google Scholar] [CrossRef]
- Bharti, D.; Tiwari, S.P. Phase separation induced high mobility and electrical stability in organic field-effect transistors. Synth. Met. 2016, 221, 186–191. [Google Scholar] [CrossRef]
- Kazim, S.; Ramos, F.J.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M.; Ahmad, S. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy Environ. Sci. 2015, 8, 1816–1823. [Google Scholar] [CrossRef]
- Liu, Y.X.; Summers, M.A.; Scully, S.R.; McGehee, M.D. Resonance energy transfer from organic chromophores to fullerene molecules. J. Appl. Phys. 2006, 99, 093521. [Google Scholar] [CrossRef] [Green Version]
- Mottram, A.D.; Lin, Y.H.; Pattanasattayavong, P.; Zhao, K.; Amassian, A.; Anthopoulos, T.D. Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications. ACS Appl. Mater. Interfaces 2016, 8, 4894–4902. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Brotherton, S.D. Introduction to Thin Film Transistors: Physics and Technology of TFTs; Springer International Publishing: Cham, Switzerland, 2013. [Google Scholar] [CrossRef] [Green Version]
- Tavasli, A.; Gurunlu, B.; Gunturkun, D.; Isci, R.; Faraji, S. A Review on Solution-Processed Organic Phototransistors and Their Recent Developments. Electronics 2022, 11, 316. [Google Scholar] [CrossRef]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, W.G.; Kang, B.H.; Kim, H.T.; Park, J.W.; Choi, D.H.; Kim, T.S.; Lim, J.H.; Kim, H.J. High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection. ACS Appl. Mater. Interfaces 2020, 12, 10673–10680. [Google Scholar] [CrossRef] [PubMed]
Parameters | Pristine TIPS-Pn | Blend 90k 1.5:1 | Blend 280k 1.5:1 | Blend 90k 2:1 | Blend 280k 2:1 |
---|---|---|---|---|---|
Ion/off (A/A) | 7.17 × 104 | 7.94 × 105 | 8.18 × 105 | 2.44 × 105 | 1.02 × 106 |
μ (cm2/V∙s) | 0.03 | 0.07 | 0.12 | 0.03 | 0.05 |
VT (V) | −9.77 | −10.85 | −11.58 | −4.19 | −0.47 |
SS (V/decade) | 1.41 | 0.88 | 1.94 | 1.08 | 0.33 |
EQE (%) | |||||
---|---|---|---|---|---|
Wavelength (nm) | Pristine TIPS-Pn | Blend 90k 1.5:1 | Blend 280k 1.5:1 | Blend 90k 2:1 | Blend 280k 2:1 |
690 | 0.004 | 0.114 | 83 | 145 | 6 |
450 | 108 | 997 | 1072 | 588 | 432 |
340 | 1821 | 8284 | 7197 | 4342 | 4119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Kim, D.; Park, J.; Kim, D.Y. Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines 2023, 14, 620. https://doi.org/10.3390/mi14030620
Shin H, Kim D, Park J, Kim DY. Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines. 2023; 14(3):620. https://doi.org/10.3390/mi14030620
Chicago/Turabian StyleShin, Hyunji, Dongwook Kim, Jaehoon Park, and Dae Yu Kim. 2023. "Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers" Micromachines 14, no. 3: 620. https://doi.org/10.3390/mi14030620
APA StyleShin, H., Kim, D., Park, J., & Kim, D. Y. (2023). Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines, 14(3), 620. https://doi.org/10.3390/mi14030620