MOSs-String-Triggered Silicon-Controlled Rectifier (MTSCR) ESD Protection Device for 1.8 V Application
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duvvury, C. ESD qualification changes for 45 nm and beyond IEEE Int. In Proceedings of the 2018 Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Du, F.-B.; Liou, J.J. An enhanced gate-grounded NMOSFET for robust ESD applications. IEEE Electron Device Lett. 2019, 40, 1491–1494. [Google Scholar] [CrossRef]
- Li, J.; Halbach, R. Analysis of failure mechanism on Gate-Silicided and Gate-Non-Silicided, Drain/Source Silicide-blocked ESD NMOSFETs in a 65 nm Bulk CMOS technology int. In Proceedings of the 2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 3–7 July 2006; pp. 3–7. [Google Scholar] [CrossRef]
- Kim, C.S.; Park, H.B.; Kim, B.G.; Kang, D.G.; Lee, M.G.; Lee, S.W.; Jeon, C.H.; Kim, W.G.; Yoo, Y.J.; Yoon, H.S. A novel NMOS transistor for high performance ESD protection devices in 0.18/spl mu/m CMOS technology utilizing salicide process. In Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium Proceedings 2000 (IEEE Cat. No. 00TH8476), Anaheim, CA, USA, 26–28 September 2000; pp. 407–412. [Google Scholar] [CrossRef]
- Ker, M.-D.; Hsu, K.C. Overview of on-chip electronstatic discharge protection design with SCR-base devices in CMOS integrated circuits. IEEE Trans. Device Mater. Rel. 2005, 5, 235–249. [Google Scholar] [CrossRef]
- Sarro, J.; Rosenbaum, E. Study of design factors affecting turn-on time of silicon controlled rectifiers (SCRS) in 90 and 65 nm bulk CMOS technologies. In Proceedings of the 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 26–30 March 2006; pp. 163–168. [Google Scholar] [CrossRef]
- Du, F.; Hou, F.; Song, W.; Chen, R.; Liu, J.; Liu, Z.; Liou, J.J. An enhanced MLSCR structure suitable for ESD protection in advanced epitaxial CMOS technology. IEEE Trans. Electron Devices. 2019, 66, 2062–2067. [Google Scholar] [CrossRef]
- Lu, T.C.; Wang, M.T.; Shone, F. Design strategy of MLSCR devices for sub-micron CMOS technology. In Proceedings of the Technical Papers. International Symposium on VLSI Technology, Systems, and Applications, Taipei, Taiwan, 3–5 June 1997; pp. 241–244. [Google Scholar] [CrossRef]
- Mergens, M. Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies. IEEE Trans. Device Mater. Rel. 2005, 5, 532–542. [Google Scholar] [CrossRef]
- Gauthier, R.; Li, J. Investigation of voltage overshoots in diode triggered silicon controlled rectifiers (DTSCRs) under very fast transmission line pulsing (VfTLP). In Proceedings of the 2009 31st EOS/ESD Symposium, Anaheim, CA, USA, 30 August–4 September 2009; pp. 1–10. [Google Scholar]
- Chen, W.-Y.; Ker, M.-D. Diode-triggered silicon controlled rectifier with reduced voltage overshoot for CDM ESD protection. IEEE Trans. Device Mater. Rel. 2012, 12, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Miao, M. Minimizing multiple triggering effect in diode triggered silicon-controlled rectifiers for ESD protection applications. IEEE Electron Device Lett. 2012, 33, 893–895. [Google Scholar] [CrossRef]
- Ker, M.-D.; Wu, W.-L. ESD-protection design with extra low-leakage-current diode string for RF circuits in SiGe BiCMOS process. IEEE Trans. Device Mater. Rel. 2006, 6, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhiwei, L. A Diode-Triggered Silicon-Controlled Rectifier with Small Diode Width for Electrostatic Discharge Applications; IEEE EDSSC: Hsinchu, Taiwan, 2017. [Google Scholar] [CrossRef]
- Hou, F.; Liu, J.; Liu, Z.; Huang, W.; Gong, T.; Yu, B.; Liou, J.J. New Diode-Triggered Silicon-Controlled Rectifier for Robust Electrostatic Discharge Protection at High Temperatures. IEEE Trans. Electron Devices 2019, 66, 2044–2048. [Google Scholar] [CrossRef]
- Du, F.; Song, W. Augmented DTSCR With Fast Turn-On Speed for Nanoscale ESD Protection Applications. IEEE Trans. Electron Devices 2020, 60, 1353–1356. [Google Scholar] [CrossRef]
- Sun, R.C.; Wang, Z.; Klebanov, M.; Liang, W.; Liou, J.; Liu, D.G. Silicon-Controlled Rectifier for Electrostatic Discharge Protection Solutions With Minimal Snapback and Reduced Overshoot Voltage. IEEE Electron Device Lett. 2015, 36, 424–426. [Google Scholar] [CrossRef]
- Di Sarro, J.; Rosenbaum, E. Evaluation of SCR-based ESD protection devices in 90 nm and 65 nm CMOS technologies. In Proceedings of the 2007 IEEE International Reliability Physics Symposium Proceedings, 45th Annual, Phoenix, AZ, USA, 15–19 April 2007; pp. 348–357. [Google Scholar] [CrossRef]
- Chatterjee, A.; Polgreen, T. A low-voltage triggering SCR for on-chip ESD protection at output and input pads. IEEE Electron Device Lett. 1991, 12, 21–22. [Google Scholar] [CrossRef]
- Shan, Y.; Hu, B. PLDD/NHALO-assisted low-trigger SCR for high-voltage tolerant ESD protection in foundry CMOS process without extra mask. Electron Device Lett. 2009, 45, 778–780. [Google Scholar] [CrossRef]
- Ker, M.-D.; Chang, H.-H. Complementary-LVTSCR ESD protection circuit for submicron CMOS VLSI/ULSI. IEEE Trans. Electron Devices 1996, 43, 588–598. [Google Scholar]
- Yang, K.; Liu, J.; Liu, Z. LVTSCR with High Holding Voltage for ESD Protection in 55 nm CMOS Process. In Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October 2019; pp. 1–3. [Google Scholar]
- Huang, M.; Du, F.; Hou, F.; Song, W.; Liu, J.; Liu, Z. Enhanced LVTSCR with High Holding Voltage in Advanced CMOS technology. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 12–14 June 2019; pp. 1–2. [Google Scholar]
- Do, K.I.; Koo, Y.S. A New SCR Structure With High Holding Voltage and Low ON-Resistance for 5-V Applications. IEEE Trans. Electron Devices 2020, 67, 1052–1058. [Google Scholar] [CrossRef]
- Muhonen, K.; Grund, E.; Ashton, R. High-Speed TLP and ESD Characterization of Ics. In Proceedings of the 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 5–8 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Du, X.; Dong, S.; Han, Y.; Huo, M.; Huang, D. Low-leakage diode-triggered silicon controlled rectifier for electrostatic discharge protection in 0.18-μm CMOS process. J. Zhejiang Univ. Sci. A 2009, 10, 1060–1066. [Google Scholar] [CrossRef]
- Liang, H.; Ma, Q.; Sun, J.; Liu, J.; Gu, X. A Novel DTSCR With Embedded MOS and Island Diodes for ESD Protection of High-Speed ICs. IEEE Trans. Device Mater. Reliab. 2022, 22, 306–311. [Google Scholar] [CrossRef]
Device Name | Number of NMOS (N) | TLP Measurement Results | VF-TLP Measurement Results | ||||||
---|---|---|---|---|---|---|---|---|---|
Von (V) | Vt1 (V) | Vh (V) | It2 (A) | Von (V) | Vt1 (V) | Vh (V) | It2 (A) | ||
MTSCR1 | 3 | 1.92 | 5.65 | 2.42 | 2.72 | 3.14 | 6.03 | 2.85 | 7.86 |
MTSCR2 | 4 | 2.80 | 5.51 | 2.50 | 2.71 | 4.25 | 6.37 | 2.60 | 8.09 |
MTSCR3 | 5 | 3.44 | 5.42 | 2.21 | 2.71 | 4.99 | 6.62 | 3.23 | 8.18 |
MTSCR4 | 6 | 4.05 | 5.47 | 2.35 | 2.73 | 5.39 | 6.75 | 3.68 | 7.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Wei, H.; Liu, H.; Hou, F.; Xiang, Q.; Du, F.; Yan, C.; Gao, T.; Liu, Z. MOSs-String-Triggered Silicon-Controlled Rectifier (MTSCR) ESD Protection Device for 1.8 V Application. Micromachines 2023, 14, 632. https://doi.org/10.3390/mi14030632
Chen R, Wei H, Liu H, Hou F, Xiang Q, Du F, Yan C, Gao T, Liu Z. MOSs-String-Triggered Silicon-Controlled Rectifier (MTSCR) ESD Protection Device for 1.8 V Application. Micromachines. 2023; 14(3):632. https://doi.org/10.3390/mi14030632
Chicago/Turabian StyleChen, Ruibo, Hao Wei, Hongxia Liu, Fei Hou, Qi Xiang, Feibo Du, Cong Yan, Tianzhi Gao, and Zhiwei Liu. 2023. "MOSs-String-Triggered Silicon-Controlled Rectifier (MTSCR) ESD Protection Device for 1.8 V Application" Micromachines 14, no. 3: 632. https://doi.org/10.3390/mi14030632
APA StyleChen, R., Wei, H., Liu, H., Hou, F., Xiang, Q., Du, F., Yan, C., Gao, T., & Liu, Z. (2023). MOSs-String-Triggered Silicon-Controlled Rectifier (MTSCR) ESD Protection Device for 1.8 V Application. Micromachines, 14(3), 632. https://doi.org/10.3390/mi14030632