The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Morphology and Microstructure of Cermet
3.2. Parameters of Micro Particle Bombarding (MPB)
3.3. Residual Stress Analysis of Micro Particle Bombarding Process
4. Discussion
5. Conclusions
- Higher the bombarding time and air pressure, the worse the surface roughness of cermet for both micro blasting (0.36~0.57 μmRa) and micro shot peening (0.046~0.1 μmRa).
- The surface hardness of cermet was improved in the range of 14~66% (HV2167~HV3163) by the micro particle bombarding (MPB) process.
- The relationship between the surface hardness (Y) and bombarding time (X) of cermet was established by regression analysis: Y (Hardness, HV) = 263X(Bombarding time) + 1906. It is very useful to predict the surface hardness using bombarding time for the micro particle bombarding (MPB) process.
- The micro shot peening process provides a good surface integrity for cermet due to the better surface roughness of 0.1μmRa and higher compressive residual stress of −1393.7 MPa (26% enhancement).
- The relationship between residual stress (Y) and surface roughness (X) of SKD11 tool steel for micro blasting was established as Y (Residual stress) = −787.92X (Surface roughness, μmRa) −510.
- The relationship between residual stress (Y) and surface hardness (X) of SKD11 tool steel for micro shot peening was found to be Y (Residual stress) =−1.23X (Surface hardness, HV) −297.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, S.; Schueller, J.K.; Tlusty, J. Tool Wear in Milling Hardened Die Steel. J. Manuf. Sci. Eng. 1998, 120, 669–673. [Google Scholar] [CrossRef]
- Tkadletz, M.; Schalk, N.; Daniel, R.; Keckes, J.; Czettl, C.; Mitterer, C. Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surf. Coatings Technol. 2016, 285, 31–46. [Google Scholar] [CrossRef]
- Kameyama, Y.; Komotori, J. Tribological properties of structural steel modified by fine particle bombardment (FPB) and diamond-like carbon hybrid surface treatment. Wear 2007, 263, 1354–1363. [Google Scholar] [CrossRef]
- Cai, D.H.; Qi, H.; Wen, D.H.; Zhang, L.; Yuan, Q.L.; Chen, Z.Z. Effect of fluid motion on the impact erosion by a mi-cro-particle on quartz crystals. AIP Adv. 2016, 6, 085203. [Google Scholar] [CrossRef] [Green Version]
- Bouzakis, K.-D.; Bouzakis, E.; Skordaris, G.; Makrimallakis, S.; Tsouknidas, A.; Katirtzoglou, G.; Gerardis, S. Effect of PVD films wet micro-blasting by various Al2O3 grain sizes on the wear behaviour of coated tools. Surf. Coatings Technol. 2011, 205, S128–S132. [Google Scholar] [CrossRef]
- Diniz, A.E.; Micaroni, R. Cutting conditions for finish turning process aiming: The use of dry cutting. Int. J. Mach. Tools Manuf. 2002, 42, 899–904. [Google Scholar] [CrossRef]
- Diniz, A.E.; de Oliveira, A.J. Optimizing the use of dry cutting in rough turning steel operations. Int. J. Mach. Tools Manuf. 2004, 44, 1061–1067. [Google Scholar] [CrossRef]
- Fu, X.; Zou, B.; Liu, Y.; Huang, C.; Yao, P. Edge micro-creation of Ti(C, N) cermet inserts by micro-abrasive blasting process and its tool performance. Mach. Sci. Technol. 2019, 23, 951–970. [Google Scholar] [CrossRef]
- Das, A.; Mukhopadhyay, A.; Patel, S.K.; Biswal, B.B. Comparative Assessment on Machinability Aspects of AISI 4340 Alloy Steel Using Uncoated Carbide and Coated Cermet Inserts During Hard Turning. Arab. J. Sci. Eng. 2016, 41, 4531–4552. [Google Scholar] [CrossRef]
- Farrahi, G.; Ghadbeigi, H. An investigation into the effect of various surface treatments on fatigue life of a tool steel. J. Mater. Process. Technol. 2006, 174, 318–324. [Google Scholar] [CrossRef]
- Yang, M.; Choi, J.; Lee, J.; Hur, N.; Kim, D. Wet blasting as a deburring process for aluminum. J. Mater. Process. Technol. 2014, 214, 524–530. [Google Scholar] [CrossRef]
- Krolczyk, G.; Nieslony, P.; Legutko, S. Determination of tool life and research wear during duplex stainless steel turning. Arch. Civ. Mech. Eng. 2014, 15, 347–354. [Google Scholar] [CrossRef]
- Kennedy, D.; Vahey, J.; Hanney, D. Micro shot blasting of machine tools for improving surface finish and reducing cutting forces in manufacturing. Mater. Des. 2005, 26, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Bose, B.; Arif, A.F.M.; Veldhuis, S.C. Improving coated carbide tool life through wide peening cleaning (WPC) during the wet milling of H13 tool steel. Wear 2020, 450–451, 203259. [Google Scholar] [CrossRef]
- Harada, Y.; Fukauara, K.; Kohamada, S. Effects of microshot peening on surface characteristics of high-speed tool steel. J. Mater. Process. Technol. 2008, 201, 319–324. [Google Scholar] [CrossRef]
- Yamada, T.; Mizobe, K.; Kida, K. Rolling Contact Fatigue Life of 13Cr-2Ni-2Mo Stainless Steels which are Surface Treated by Induction Heating (IH) and Wide Peening Cleaning (WPC). Key Eng. Mater. 2018, 777, 366–371. [Google Scholar] [CrossRef]
- Yonekura, D.; Akebono, H.; Komotori, J.; Shimizu, M.; Shimizu, H. Effect of residual stress on fatigue strength of steel modified by WPC process. In Proceedings of the (ICF10), 2–6 December 2001, Honolulu, HI, USA; p. ICF100861OR.
- Chung, Y.-H.; Chen, T.-C.; Lee, H.-B.; Tsay, L.-W. Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel. Metals 2021, 11, 1408. [Google Scholar] [CrossRef]
- Winkler, K.; Schurer, S.; Tobie, T.; Stahl, K. Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot-peened gears of different sizes. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 7338–7349. [Google Scholar] [CrossRef]
Material | Chemical Composition(wt%) | |||||||
---|---|---|---|---|---|---|---|---|
C | Si | P | S | Mn | Cr | Mo | Ni | |
SKD 11 | 1.4–1.6 | 0.1–0.6 | 0.03 | 0.03 | 0.1–0.6 | 11.0–13.0 | 0.82 | - |
Bombarding Time (s) | 0 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|
Hardness (HV) | 1906 | 2359 | 2167 | 3163 | 2689 |
Increment (%) | -- | 24% | 14% | 66% | 41% |
Micro Particle Bombarding (MPB) | Base Material | Micro Blasting | Micro Shot Peeing |
---|---|---|---|
Residual Stress (MPa) | −1107.5 | −1297.7 | −1393.7 |
Increment (%) | - | 17% | 26% |
Processes | Base Material (MPa) | Micro Blasting (MPa) | Micro Shot Peening (MPa) | |
---|---|---|---|---|
MPB Parameters | ||||
A1 (0.3 MPa, 15 s) | −1027.1 | −1109.5 | −1248 | |
B1 (0.3 MPa, 20 s) | −1090.6 | −1195.3 | −1203.8 | |
C3 (0.5 MPa, 25 s) | −1218.6 | −1371.2 | −1463.8 | |
D2 (0.4 MPa, 30 s) | −1264.6 | −1331.3 | −1490.5 | |
D3 (0.5 MPa, 30 s) | −1244.7 | −1389 | −1444.5 |
Material | Cermet | SKD 11 Tool Steel | Increase Ratio (SKD 11/Cermet) | |
---|---|---|---|---|
Process | ||||
Micro blasting | 0.55 μmRa | 1.03 μmRa | −1.9 | |
Micro shot peening | 0.13 μmRa | 0.35 μmRa | 2.7 |
Process | Base Material | Micro Shot Peening | Hardness Enhancement (%) | |
---|---|---|---|---|
Material | ||||
Cermet | HV 1906 | HV 2359 | 24% | |
SKD 11 tool steel | HV 686 | HV 789 | 15% |
Material | Cermet (MPa) | Cermet Enhancement (%) | SKD 11 (MPa) | SKD 11 Enhancement (%) | |
---|---|---|---|---|---|
Process | |||||
Base material | −1107.5 | - | −1264.6 | - | |
Micro blasting | −1297.7 | 17% | −1331.3 | 5% | |
Micro shot peening | −1393.7 | 26% | −1490.5 | 18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, F.-C.; Chen, L.-J.; Liu, Z.-R.; Tsai, H.-A.; Lin, C.-H.; Chen, W.-Y.; Lee, H.-T.; Cheng, T.-J. The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel. Micromachines 2023, 14, 643. https://doi.org/10.3390/mi14030643
Hsu F-C, Chen L-J, Liu Z-R, Tsai H-A, Lin C-H, Chen W-Y, Lee H-T, Cheng T-J. The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel. Micromachines. 2023; 14(3):643. https://doi.org/10.3390/mi14030643
Chicago/Turabian StyleHsu, Fu-Chuan, Li-Jie Chen, Zong-Rong Liu, Hsiu-An Tsai, Chin-Hao Lin, Wei-Yu Chen, Hwa-Teng Lee, and Tsung-Jen Cheng. 2023. "The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel" Micromachines 14, no. 3: 643. https://doi.org/10.3390/mi14030643
APA StyleHsu, F. -C., Chen, L. -J., Liu, Z. -R., Tsai, H. -A., Lin, C. -H., Chen, W. -Y., Lee, H. -T., & Cheng, T. -J. (2023). The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel. Micromachines, 14(3), 643. https://doi.org/10.3390/mi14030643