Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics
Abstract
:1. Introduction
2. Ultraviolet-Visible SEC (UV-Vis SEC)
2.1. OTEs in UV-Vis SEC
Ref. | Cell Characteristics | Research Topic | Method Advantage | Publish Time |
---|---|---|---|---|
[45] | WE: Zinc oxide (ZnO, Φ = 6 mm); CE: Pt disk (2.56 mm2 surface area); RE: Ag/AgCl | Methylene blue detection | Good optical transparency and electrical conductivity for ZnO OTE; Robust chemical stability; Wide potential window (−1.0 to 1.8 V) | 2020 |
[46] | WE: Indium tin oxide (ITO, 9 mm × 60 mm); CE: Pt wire; RE: Ag/Ag+ | Substituent effects of H-3Cz, P-3Cz, and E-3Cz during electropolymerization | Exceptional sensitivity; Simultaneous track ionic species and mass change during electropolymerization | 2021 |
[47] | WE: Fluorine-doped tin oxide (FTO) decorated with AgNPs; CE: Pt plate (10 × 20 mm2); RE: Ag/AgCl | Monitor of Ampyra level | High sensitivity and selectivity; Low detection limit (~6 µmol/L) | 2020 |
[48] | WE: Free-standing single wall carbon nanotube (SWCNT) film; CE: Pt wire; RE: Ag/AgCl | The electrochemical process of Ferrocenemethanol and Hexacyanoferrate (II), Dopamine (DA) oxidation | Rapid and facile fabrication; Good transparency and conductivity; High reproducibility; Low cost | 2016 |
- ITO film has been one of the most used metal oxides OTEs. The thin film layer is typically sputter-coated on a glass substrate [49]. However, because of the less negative inert potential window (i.e., −0.45 to +1.92V vs. reversible hydrogen electrode (RHE) in 0.1M NaOH), this material can only be used in a relatively small range of potentials [50]. In addition, further widespread use may be limited by the cost, brittleness, and scarcity of indium [51]. FTO is another representative metal oxide OTE. Like ITO, FTO also faces the problem of a less negative inert potential window (i.e., −0.51 to 1.73V vs. RHE in 0.1 M NaOH) [50].
- Thin metal films have been widely reported and proven. Especially, sputtered Au film is an appropriate candidate for the thin film electrode material because of its good conductivity, enough transparency, and very low chemical reactivity. Additionally, the electrochemical behavior of Au has been studied extensively [52,53], and thus it may be easier to predict and understand the behavior of an Au electrode. However, Au may not be an ideal electrode material for electrochemical studies that require high potentials due to the corresponding Au oxidation [50].
- Recently, the most reported studies concentrated on using carbon-based OTEs, as stated in Table 1. Carbon-based OTEs offer several advantages over traditional metal and metal oxide OTEs, including easy accessibility, excellent chemical inertness, high electrical conductivity, a wide electrochemical potential window, versatile preparation methods, and the simplicity of surface modifications [35,36]. Unlike ITO and FTO, which have a rapid decrease in the transparency for wavelengths shorter than ~350 nm, carbon-based OTEs can exhibit enough optical transparency over a broader frequency range [35,54]. Although there are also many problems in carbon-based OTEs, such as (i) weak adhesion between the substrate and carbon nanomaterials; (ii) problems related to massive production [40]; and (iii) surface-preparation-dependent-electrochemical performance, the use of carbon-based OTEs is becoming more and more popular.
2.2. Applications of UV-Vis SEC
SEC | Ref. | Electrochemistry | Electrode Configuration | Research Studied | Highlights | Weak Points |
---|---|---|---|---|---|---|
Spectroscopy | ||||||
UV-Vis SEC | [65] | CV | WE: Glassy carbon foil or SWCNT; CE: Pt wire; RE: Ag/AgCl | Oxidation of dopamine; Electropolymerization of EDOT | Excellent compatibility to form bidimensional SEC (UV-Vis and Raman); Multiple responses; Wide versatility | Complicated electrochemical structure |
Parallel arrangement | ||||||
[32] | CV | WE/CE: SWCNT; RE: Ag wire | Quantitative resolution of CAT/DA and DA/EP mixtures | High reproducibility; Low cost; Small volume usage of sample solution | Non-ideal LOD | |
Parallel arrangement | ||||||
[66] | CV, CA, LSV | WE: FTO; CE: Pt foil; RE: Ag/AgCl | Vitamin B12 as an OER catalyst | Dual monitoring strategy; High precision and sensitivity | High requirement on the compatibility between different techniques | |
Normal arrangement | ||||||
[67] | CV, LSV | WE: Carbon disc; CE: Carbon; RE: Ag wire | Determination of Isoprenaline | Screen-printed electrode; Low cost; Easy-to-use; Longer optical path length; Small volume usage of sample solution | Non-ideal LOD; Need pretreatment on the sample | |
Parallel arrangement | ||||||
SERS SEC | [24] | CV, LSV | WE: AgNPs decorated Ag; CE: Carbon; RE: Ag wire | Quantification of [Fe(CN)6]3− and [Ru(bpy)3]2+ | High sensitivity; Real-time; Cost-effective; Low LOD; Long integration time (~2 S) | Inhomogeneity of AgNPs size; Inconsistent surface roughness |
λ = 785 nm | ||||||
[17] | Potentiostatic | WE: Au-capped Silicon nanopillars; CE: Pt; RE: Ag/AgCl | Melamine detection in milk | Cost-effective; High repeatability and sensitivity; Low LOD | Require complicated preparation process; Need pretreatment on the sample; Limited applicability to other analytes | |
λ = 785 nm | ||||||
[68] | CV, CA | WE: Screen-printed Carbon decorated with AgNPs; CE: Carbon disc RE: Ag wire | Reaction mechanism of resazurin/resorufin/dihydroresorufin system | Cost-effective; Dual monitoring strategy | High requirement on the compatibility between different techniques | |
λ = 785 nm | ||||||
[20] | CV | WE: Ag nanocube made 3D PLM; CE: Pt; RE: Ag/AgCl | Electrochemical reaction mechanism of [Ru(NH3)6]3+ and toxin methylene blue | “Mobile” SERS-active substrate; Excellent reproducibility; Smallest SEC cell; High sensitivity | Limited potential window; Complicated manufacturing processes | |
λ = 532 nm | ||||||
NMR SEC | [69] | CV, CA | WE: Au thin film (50 nm) CE: Pt wire; RE: Pt foil (thickness, ~100 µm) | Redox behaviors of 1,4-Benzoquinone | High resolution; Potential dependent NMR characterization | High electrochemical cell resistance; Elaborate combining process between an electrochemical cell with an NMR tube |
500 MHz | ||||||
[11] | CV, | WE: Polyaniline (PAn) coated ITO; CE: Pt wire; RE: Ag wire | Electro-catalysis of Hydroquinone | High applicability under varied experimental conditions (such as solvent composition, pH values, etc.) | Non-potential dependent electrolysis. Relatively low sensitivity of NMR caused by limited diffusion | |
500 MHz | ||||||
[70] | CV, CA | WE: Pt/MoS2/GNS coated ITO; CE: Pt wire; RE: Saturated calomel | Reaction mechanism of EOR | Real-time measurement; In situ NMR set up; Good compatibility | A relatively complex preparation process for composite material | |
500 MHz | ||||||
[71] | CV, CA | WE: Carbon fiber; CE: Pt wire; RE: Ag/AgCl | Electroreduction process of p-benzoquinone | High resolution; Enhanced electron reduction rate of p-benzoquinone | Limited electrochemical application to other analytes | |
600 MHz | ||||||
DFM SEC | [14] | CV | WE: AgNPs modified Pt90Ir10 alloy wire; CE: Pt wire; RE: Ag/AgCl | Redox reactions of AgNPs in KCl solution | Realization of real-time visualized video streaming of the oxidation processes | High requirements on the compatibility between different techniques |
Halogen lamp | ||||||
[72] | CV | WE: ITO; CE: Pt wire; RE: Pt wire | Influence of halide anion (F−, Cl−, Br−) on localized surface plasmon resonance of AuNRs | Comprehensive analysis of resonance energy, line width, and intensity of AuNR plasmon on individual entity level | Limited options for choosing different WEs | |
-- | ||||||
[73] | CV | WE: AuNPs modified ITO ultramicroelectrode; CE: Pt wire; RE: Ag/AgCl | The oxidation process of Hydrazine | A better understanding of catalytic reactions and reproducibility | Broad DFM signal distribution; High homogeneous requirement on ITO surface to eliminate bad local contact and contribute to DFM’s background signal | |
Halogen lamp or 632.8 nm laser | ||||||
[74] | CV, LSV | WE: Ag nanocubes modified ITO; CE: Pt wire; RE: Pt wire | Deposition mechanism of copper on individual Ag nanocube | Can simultaneously track multiple NPs; Direct observation of formation kinetics and morphology on a nanoscale level | Laborious; Confined to OTE; Maintain enough interparticle distance to eliminate reactant diffusion | |
Halogen lamp |
3. Surface-Enhanced Raman Spectroscopy SEC (SERS SEC)
3.1. Nanostructure-Defined SERS-Active Substrates
3.2. Applications of SERS SEC
4. Nuclear Magnetic Resonance SEC (NMR SEC)
4.1. Deteriorations of Magnetic Field in NMR SEC
4.2. Applications of NMR SEC
4.2.1. NMR SEC for Ethanol Oxidation Reaction Application (Regular Electrode Configuration)
4.2.2. NMR SEC for QH2 Application (Using Polymer Electrode)
4.2.3. NMR SEC for Ascorbic Acid Application (Using Magnetohydrodynamic Effect)
Publish Time | 1975 | 2000 | 2009 | 2018 |
---|---|---|---|---|
Ref. | [118] | [121] | [122] | [11] |
Electrode System | WE: Hg-coated Pt wire CE: Pt (Wire) | WE: Tubular Au film CE: Cylindrical Pt-mesh RE: Ag/AgCl | WE: Carbon fiber filament CE: Carbon fiber filament RE: Thin chlorinated Ag wire | WE: Polyaniline (PAn) coated ITO CE: Pt (Wire) RE: Ag wire |
Cell structure | ||||
System Studied | Reduction of trans-1-phenyl-1-buten-3-one | Reduction of p-benzoquinone | Reduction of p-benzoquinone | Oxidation of hydroquinone |
Advantages | Without the need to modify the NMR probe | Minimal influence on homogeneity magnetic field; Unmodified probe and outstanding resolution and sensitivity | Easy to prepare and broad applicability, suitable for a large potential window | Fast and with the capability of quantitatively monitoring the generation of products under varied solvent compositions and pH values |
Drawbacks | Low resolution, line broadening, and toxic metal are used | Slow diffusion from the inactive region | Take a long time for results to be ready (~6 h) | The probe requires a relatively complex preparation process. |
5. Dark-Field Microscopy SEC (DFM SEC)
5.1. Localized Surface Plasmon Resonance (LSPR) in DFM SEC
5.2. Applications of DFM SEC
6. SEC Techniques’ Applications in Microfluidics
6.1. Applications of SERS/Raman SEC in Microfluidics
6.2. Applications of UV-Vis SEC in Microfluidics
7. Summary & Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heineman, W.R.; Winograd, N.; Jensen, W.B. Spectroelectrochemistry Using Optically Transparent Electrodes–Ted Kuwana and the Early Years. Electroanalysis 2021, 34, 1826–1833. [Google Scholar] [CrossRef]
- Li, Y.-T.; Qu, L.-L.; Li, D.-W.; Song, Q.-X.; Fathi, F.; Long, Y.-T. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag–graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 2013, 43, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Strange, L.E.; Yadav, J.; Garg, S.; Shinde, P.S.; Hill, J.W.; Hill, C.M.; Kung, P.; Pan, S. Investigating the redox properties of two-dimensional MoS2 using photoluminescence spectroelectrochemistry and scanning electrochemical cell microscopy. J. Phys. Chem. Lett. 2020, 11, 3488–3494. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.F.; Nunes, L.M.S.; Lobo, C.; Carvalho, A.; Cabeca, L.F.; Colnago, L.A. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor. J. Magn. Reson. 2015, 261, 83–86. [Google Scholar] [CrossRef]
- Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface-enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Fujimoto, M.S.; Cheng, Y.H.; Kargupta, R.; Soltis, J.A.; Motkuri, R.K.; Basuray, S. Improving the sensitivity of electrochemical sensors through a complementary luminescent mode: A new spectroelectrochemical approach. Sens. Actuators B Chem. 2019, 284, 663–674. [Google Scholar] [CrossRef]
- Huang, Y.; Han, Y.; Gao, Y.; Gao, J.; Ji, H.; He, Q.; Tu, J.; Xu, G.; Zhang, Y.; Han, L. Electrochemical sensor array with nanoporous gold nanolayer and ceria@ gold corona-nanocomposites enhancer integrated into microfluidic for simultaneous ultrasensitive lead ion detection. Electrochim. Acta 2021, 373, 137921. [Google Scholar] [CrossRef]
- Lee, C.; Lee, Y.M.; Moon, M.S.; Park, S.H.; Park, J.W.; Kim, K.G.; Jeon, S.-J. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: Evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 1996, 416, 139–144. [Google Scholar] [CrossRef]
- Ibañez, D.; Heras, A.; Colina, A. Bipolar spectroelectrochemistry. Anal. Chem. 2017, 89, 3879–3883. [Google Scholar] [CrossRef] [Green Version]
- Garoz-Ruiz, J.; Heras, A.; Colina, A. Direct determination of ascorbic acid in a grapefruit: Paving the way for in vivo spectroelectrochemistry. Anal. Chem. 2017, 89, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-P.; Jiang, W.-L.; Cao, S.-H.; Sun, H.-J.; You, X.-Q.; Cai, S.-H.; Wang, J.-L.; Zhao, C.-S.; Wang, X.; Chen, Z. NMR spectroelectrochemistry in studies of hydroquinone oxidation by polyaniline thin films. Electrochim. Acta 2018, 273, 300–306. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.-H.; Feng, L.; Neil, J.; Antonio, R.M.P.; Rahman, M.; Yang, J.; Azizighannad, S.; Mitra, S.; Basuray, S. Communication—Electrochemical Impedance Signature of a Non-Planar, Interdigitated, Flow-Through, Porous, Carbon-Based Microelectrode. J. Electrochem. Soc. 2019, 166, B1669–B1672. [Google Scholar] [CrossRef]
- Levi, M.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1− x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS. J. Electrochem. Soc. 1999, 146, 1279–1289. [Google Scholar] [CrossRef]
- Wonner, K.; Evers, M.V.; Tschulik, K. Simultaneous opto-and spectro-electrochemistry: Reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 2018, 140, 12658–12661. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; Pérez-Junquera, A.; González-García, M.a.B.a.; Hernández-Santos, D.; Fanjul-Bolado, P. In situ spectroelectrochemical monitoring of dye bleaching after electrogeneration of chlorine-based species: Application to chloride detection. Anal. Chem. 2018, 90, 7442–7449. [Google Scholar] [CrossRef]
- Abdiaziz, K.; Salvadori, E.; Sokol, K.P.; Reisner, E.; Roessler, M.M. Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules. Chem. Commun. 2019, 55, 8840–8843. [Google Scholar] [CrossRef] [PubMed]
- Viehrig, M.; Rajendran, S.T.; Sanger, K.; Schmidt, M.S.; Alstrøm, T.S.; Rindzevicius, T.; Zór, K.; Boisen, A. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk. Anal. Chem. 2020, 92, 4317–4325. [Google Scholar] [CrossRef]
- Vaněčková, E.; Bouša, M.; Vivaldi, F.; Gál, M.; Rathouský, J.; Kolivoška, V.; Sebechlebská, T. UV/VIS spectroelectrochemistry with 3D printed electrodes. J. Electroanal. Chem. 2020, 857, 113760. [Google Scholar] [CrossRef]
- Garoz-Ruiz, J.; Guillen-Posteguillo, C.; Heras, A.; Colina, A. Simplifying the assessment of parameters of electron-transfer reactions by using easy-to-use thin-layer spectroelectrochemistry devices. Electrochem. Commun. 2018, 86, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Koh, C.S.L.; Lee, H.K.; Phan-Quang, G.C.; Han, X.; Lee, M.R.; Yang, Z.; Ling, X.Y. SERS-and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions. Angew. Chem. 2017, 129, 8939–8943. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhu, Z.; Zhou, S.; Zhu, C.; Dong, S. Recent advances in spectroelectrochemistry. Nanoscale 2018, 10, 3089–3111. [Google Scholar] [CrossRef]
- León, L.; Mozo, J. Designing spectroelectrochemical cells: A review. TrAC Trends Anal. Chem. 2018, 102, 147–169. [Google Scholar] [CrossRef]
- Garoz-Ruiz, J.; Perales-Rondon, J.V.; Heras, A.; Colina, A. Spectroelectrochemical sensing: Current trends and challenges. Electroanalysis 2019, 31, 1254–1278. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Pérez-Junquera, A.; González-García, M.B.; Perales-Rondon, J.V.; Heras, A.; Colina, A.; Hernández-Santos, D.; Fanjul-Bolado, P. Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes. Electrochim. Acta 2018, 264, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Kuwana, T.; Darlington, R.; Leedy, D. Electrochemical Studies Using Conducting Glass Indicator Electrodes. Anal. Chem. 1964, 36, 2023–2025. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.-Y.; Qian, C.; Song, X.-N.; Li, W.-W.; Yu, H.-Q. An UV–vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. Biosens. Bioelectron. 2015, 64, 25–29. [Google Scholar] [CrossRef]
- Usov, P.M.; Fabian, C.; D’Alessandro, D.M. Rapid determination of the optical and redox properties of a metal–organic framework via in situ solid state spectroelectrochemistry. Chem. Commun. 2012, 48, 3945–3947. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D.; Gutz, I.G. Long-optical-path thin-layer spectroelectrochemical flow cell with inexpensive gold electrodes. Electroanalysis 2001, 13, 681–685. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Cai, B.; Xiao, X.; Guo, S.; Fan, Z.; Li, J.; Duan, X.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596–3601. [Google Scholar] [CrossRef]
- Dou, W.; Qiang Zhu, L.; Jiang, J.; Wan, Q. Flexible protonic/electronic coupled neuron transistors self-assembled on paper substrates for logic applications. Appl. Phys. Lett. 2013, 102, 093509. [Google Scholar] [CrossRef]
- Li, Z.; Ni, J.; Zhang, S.; Li, C.; Du, Y.; Zhang, Y.; Cai, H.; Li, J.; Zhang, J. Effect of incorporation of highly-ordered a-Ge: H nanoparticles on the performance of perovskite solar cells. Micro Nano Lett. 2018, 13, 1111–1116. [Google Scholar] [CrossRef]
- Garoz-Ruiz, J.; Guillen-Posteguillo, C.; Colina, A.; Heras, A. Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta 2019, 195, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoçi, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.M.; Eisele, D.M.; Rabe, J.P.; Liang, Y.; Feng, X.; Zhi, L.; Müllen, K.; Lyon, J.L.; Williams, R.; Bout, D.A.V. Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV–Vis region. Small 2010, 6, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Benavidez, T.E.; Garcia, C.D. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes. Electrophoresis 2013, 34, 1998–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.-H.; Kim, B.-J.; Park, J.-S. Effects of the corona pretreatment of PET substrates on the properties of flexible transparent CNT electrodes. Thin Solid Film. 2014, 572, 73–78. [Google Scholar] [CrossRef]
- Barnes, T.M.; Bergeson, J.D.; Tenent, R.C.; Larsen, B.A.; Teeter, G.; Jones, K.M.; Blackburn, J.L.; van de Lagemaat, J. Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer. Appl. Phys. Lett. 2010, 96, 118. [Google Scholar] [CrossRef]
- Schindler, A.; Brill, J.; Fruehauf, N.; Novak, J.P.; Yaniv, Z. Solution-deposited carbon nanotube layers for flexible display applications. Phys. E Low-Dimens. Syst. Nanostructures 2007, 37, 119–123. [Google Scholar] [CrossRef]
- López-Naranjo, E.J.; González-Ortiz, L.J.; Apátiga, L.M.; Rivera-Muñoz, E.M.; Manzano-Ramírez, A. Transparent electrodes: A review of the use of carbon-based nanomaterials. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Jürgen, D.; Steckhan, E. Influence of the supporting electrolyte and the pH on the electrooxidative activation of glassy carbon electrodes. J. Electroanal. Chem. 1992, 333, 177–193. [Google Scholar] [CrossRef]
- Zhao, Q.-L.; Bao, L.; Luo, Q.-Y.; Zhang, M.; Lin, Y.; Pang, D.-W.; Zhang, Z.-L. Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. Biosens. Bioelectron. 2009, 24, 3003–3007. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.-L.; Zhang, Z.-L.; Bao, L.; Pang, D.-W. Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochem. Commun. 2008, 10, 181–185. [Google Scholar] [CrossRef]
- Kiema, G.K.; Aktay, M.; McDermott, M.T. Preparation of reproducible glassy carbon electrodes by removal of polishing impurities. J. Electroanal. Chem. 2003, 540, 7–15. [Google Scholar] [CrossRef]
- Okazaki, T.; Taniguchi, H.; Wagata, H.; Ito, M.; Kuramitz, H.; Watanabe, T. Spectroelectrochemical Evaluation of a ZnO Optically Transparent Electrode Prepared by the Spin-spray Technique. Electroanalysis 2020, 32, 1681–1688. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, X.; Zhang, H.; Gu, C.; Ma, Y. Characterization of complicated electropolymerization using UV–vis spectroelectrochemistry and an electrochemical quartz-crystal microbalance with dissipation: A case study of tricarbazole derivatives. Electrochem. Commun. 2021, 123, 106913. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Afkhami, A.; Madrakian, T.; Rameshan, R.; Rameshan, C.; Hajian, A. Absorbance-based Spectroelectrochemical Sensor for Determination of Ampyra Based on Electrochemical Preconcentration. Sens. Actuators B Chem. 2020, 324, 128723. [Google Scholar] [CrossRef]
- Ibañez, D.; Garoz-Ruiz, J.; Plana, D.; Heras, A.; Fermín, D.; Colina, A. Spectroelectrochemistry at free-standing carbon nanotubes electrodes. Electrochim. Acta 2016, 217, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, M.; Mathiyarasu, J.; Joseph, J.; Phani, K.; Yegnaraman, V. Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization. Mater. Chem. Phys. 2008, 108, 403–407. [Google Scholar] [CrossRef]
- Benck, J.D.; Pinaud, B.A.; Gorlin, Y.; Jaramillo, T.F. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: Inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 2014, 9, e107942. [Google Scholar] [CrossRef] [Green Version]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Barnartt, S. The Oxygen-Evolution Reaction at Gold Anodes I. Accuracy of Overpotential Measurements. J. Electrochem. Soc. 1959, 106, 722–729. [Google Scholar] [CrossRef]
- Burke, L.; O’Sullivan, J. A study of the electrocatalytic behaviour of gold in acid using ac voltammetry. Electrochim. Acta 1992, 37, 2087–2094. [Google Scholar] [CrossRef]
- Vollmer, A.; Feng, X.; Wang, X.; Zhi, L.; Müllen, K.; Koch, N.; Rabe, J. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes. Appl. Phys. A 2009, 94, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Itoh, T.; McCreery, R.L. In situ Raman spectroelectrochemistry of electron transfer between glassy carbon and a chemisorbed nitroazobenzene monolayer. J. Am. Chem. Soc. 2002, 124, 10894–10902. [Google Scholar] [CrossRef]
- Baran, D.; Balan, A.; Celebi, S.; Meana Esteban, B.; Neugebauer, H.; Sariciftci, N.S.; Toppare, L. Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications. Chem. Mater. 2010, 22, 2978–2987. [Google Scholar] [CrossRef]
- Kumar, R.; Pillai, R.G.; Pekas, N.; Wu, Y.; McCreery, R.L. Spatially resolved Raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J. Am. Chem. Soc. 2012, 134, 14869–14876. [Google Scholar] [CrossRef] [PubMed]
- Reybier, K.; Nguyen, T.H.Y.; Ibrahim, H.; Perio, P.; Montrose, A.; Fabre, P.-L.; Nepveu, F. Electrochemical behavior of indolone-N-oxides: Relationship to structure and antiplasmodial activity. Bioelectrochemistry 2012, 88, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, S.N.; Schulze, H.; Macdonald, D.; Crain, J.; Mount, A.R.; Bachmann, T.T. Cyclic denaturation and renaturation of double-stranded DNA by redox-state switching of DNA intercalators. J. Am. Chem. Soc. 2013, 135, 5399–5407. [Google Scholar] [CrossRef]
- Fini, H.; Hassan, Q.; Noroozifar, M.; Kerman, K. Electrografting a Hybrid Bilayer Membrane via Diazonium Chemistry for Electrochemical Impedance Spectroscopy of Amyloid-β Aggregation. Micromachines 2022, 13, 574. [Google Scholar] [CrossRef]
- Letaief, S.; Tonle, I.K.; Diaco, T.; Detellier, C. Nanohybrid materials from interlayer functionalization of kaolinite. Application to the electrochemical preconcentration of cyanide. Appl. Clay Sci. 2008, 42, 95–101. [Google Scholar] [CrossRef]
- Xu, K.-X.; Guo, M.-H.; Huang, Y.-P.; Li, X.-D.; Sun, J.-J. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering. Talanta 2018, 180, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, R.; Zheng, X.; Huang, R. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles. Anal. Chim. Acta 2016, 934, 59–65. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.-H.; Chande, C.; Chatterjee, S.; Basuray, S. A highly sensitive, easy-and-rapidly-fabricable microfluidic electrochemical cell with an enhanced three-dimensional electric field. Anal. Chim. Acta 2022, 1232, 340488. [Google Scholar] [CrossRef]
- Andria, S.E.; Seliskar, C.J.; Heineman, W.R. Simultaneous detection of two analytes using a spectroelectrochemical sensor. Anal. Chem. 2010, 82, 1720–1726. [Google Scholar] [CrossRef]
- Abdi, Z.; Balaghi, S.E.; Sologubenko, A.S.; Willinger, M.-G.; Vandichel, M.; Shen, J.-R.; Allakhverdiev, S.I.; Patzke, G.R.; Najafpour, M.M. Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12. ACS Sustain. Chem. Eng. 2021, 9, 9494–9505. [Google Scholar] [CrossRef]
- Ashokan, A.; Mulvaney, P. Spectroelectrochemistry of Colloidal CdSe Quantum Dots. Chem. Mater. 2021, 33, 1353–1362. [Google Scholar] [CrossRef]
- Ibáñez, D.; Izquierdo-Bote, D.; Pérez-Junquera, A.; González-García, M.B.; Hernandez-Santos, D.; Fanjul-Bolado, P. Raman and fluorescence spectroelectrochemical monitoring of resazurin-resorufin fluorogenic system. Dye. Pigment. 2020, 172, 107848. [Google Scholar] [CrossRef]
- Cao, S.-H.; Ni, Z.-R.; Huang, L.; Sun, H.-J.; Tang, B.; Lin, L.-J.; Huang, Y.-Q.; Zhou, Z.-Y.; Sun, S.-G.; Chen, Z. In situ monitoring potential-dependent electrochemical process by liquid NMR spectroelectrochemical determination: A proof-of-concept study. Anal. Chem. 2017, 89, 3810–3813. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; You, X.; Xiao, C.; Zhang, X.; Cai, S.; Jiang, W.; Guo, S.; Cao, S.; Chen, Z. Small-sized Pt nanoparticles supported on hybrid structures of MoS2 nanoflowers/graphene nanosheets: Highly active composite catalyst toward efficient ethanol oxidation reaction studied by in situ electrochemical NMR spectroscopy. Appl. Catal. B Environ. 2019, 259, 118060. [Google Scholar] [CrossRef]
- Da Silva, P.F.; Gomes, B.F.; Lobo, C.M.S.; Júnior, L.H.K.Q.; Danieli, E.; Carmo, M.; Blümich, B.; Colnago, L.A. Electrochemical NMR spectroscopy: Electrode construction and magnetic sample stirring. Microchem. J. 2019, 146, 658–663. [Google Scholar] [CrossRef]
- Hoener, B.S.; Byers, C.P.; Heiderscheit, T.S.; De Silva Indrasekara, A.S.; Hoggard, A.; Chang, W.-S.; Link, S.; Landes, C.F. Spectroelectrochemistry of halide anion adsorption and dissolution of single gold nanorods. J. Phys. Chem. C 2016, 120, 20604–20612. [Google Scholar] [CrossRef]
- Ma, Y.; Highsmith, A.L.; Hill, C.M.; Pan, S. Dark-field scattering spectroelectrochemistry analysis of hydrazine oxidation at Au nanoparticle-modified transparent electrodes. J. Phys. Chem. C 2018, 122, 18603–18614. [Google Scholar] [CrossRef]
- Oh, H.; Park, Y.; Song, H. Tracking underpotential deposition of copper on individual silver nanocubes by real-time single-particle plasmon scattering imaging. J. Phys. Chem. C 2020, 124, 20398–20409. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, C.; Cortés, E.; Xie, W. In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries. J. Mater. Chem. A 2021, 9, 20024–20031. [Google Scholar] [CrossRef]
- Wang, B.; Yu, S.; Shannon, C. Reduction of 4-Nitrothiophenol on Ag/Au Bimetallic Alloy Surfaces Studied Using Bipolar Raman Spectroelectrochemistry. ChemElectroChem 2020, 7, 2236–2241. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Jiang, Y.; Cai, H.; Gong, Y.; He, J. Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD. J. Raman Spectrosc. 2011, 42, 415–421. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Usov, P.M. Spectroelectrochemistry: A Powerful Tool for Studying Fundamental Properties and Emerging Applications of Solid-State Materials Including Metal–Organic Frameworks. Aust. J. Chem. 2021, 74, 77–93. [Google Scholar] [CrossRef]
- Li, D.; Li, D.-W.; Fossey, J.S.; Long, Y.-T. Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Anal. Chem. 2010, 82, 9299–9305. [Google Scholar] [CrossRef]
- Yang, H.; Li, B.Q.; Jiang, X.; Shao, J. Hybrid nanostructure of SiO 2@ Si with Au-nanoparticles for surface enhanced Raman spectroscopy. Nanoscale 2019, 11, 13484–13493. [Google Scholar] [CrossRef]
- Doering, W.E.; Nie, S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 2003, 75, 6171–6176. [Google Scholar] [CrossRef]
- Li, M.-D.; Cui, Y.; Gao, M.-X.; Luo, J.; Ren, B.; Tian, Z.-Q. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane. Anal. Chem. 2008, 80, 5118–5125. [Google Scholar] [CrossRef]
- Han, X.X.; Huang, G.G.; Zhao, B.; Ozaki, Y. Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem. 2009, 81, 3329–3333. [Google Scholar] [CrossRef]
- Shegai, T.; Vaskevich, A.; Rubinstein, I.; Haran, G. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots. J. Am. Chem. Soc. 2009, 131, 14390–14398. [Google Scholar] [CrossRef]
- Yuan, T.; Le Thi Ngoc, L.; van Nieuwkasteele, J.; Odijk, M.; van den Berg, A.; Permentier, H.; Bischoff, R.; Carlen, E.T. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface. Anal. Chem. 2015, 87, 2588–2592. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. [Google Scholar] [CrossRef] [Green Version]
- Rapta, P.; Tabet, A.; Hartmann, H.; Dunsch, L. New molecular materials for hole injection: The synthesis and in situ ESR-UV/Vis/NIR spectroelectrochemistry of 2-diarylaminothiophene-based starburst compounds. Journal of Materials Chemistry 2007, 17, 4998–5007. [Google Scholar] [CrossRef]
- Lu, L.; Eychmüller, A.; Kobayashi, A.; Hirano, Y.; Yoshida, K.; Kikkawa, Y.; Tawa, K.; Ozaki, Y. Designed fabrication of ordered porous Au/Ag nanostructured films for surface-enhanced Raman scattering substrates. Langmuir 2006, 22, 2605–2609. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Feng, Y.; Zhao, J.; Li, J.; Zhu, J.; Zhao, J. Size dependent SERS activity of Ag triangular nanoplates on different substrates: Glass vs. paper. Appl. Surf. Sci. 2019, 478, 275–283. [Google Scholar] [CrossRef]
- Yang, N.; You, T.-T.; Gao, Y.-K.; Zhang, C.-M.; Yin, P.-G. Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants. J. Agric. Food Chem. 2018, 66, 6889–6896. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Wang, M.; Jiang, S.; Zhang, L.; Yang, Z.; Li, L.; Li, J.; Cao, M.; Huang, J. Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sens. Actuators B Chem. 2017, 249, 439–450. [Google Scholar] [CrossRef]
- Gao, F.; Kong, W.; He, G.; Guo, Y.; Liu, H.; Zhang, S.; Yang, B. SERS-active vertically aligned silver/tungsten oxide nanoflakes for ultrasensitive and reliable detection of thiram. Microchem. J. 2021, 165, 106046. [Google Scholar] [CrossRef]
- Sow, I.; Grand, J.; Lévi, G.; Aubard, J.; Félidj, N.; Tinguely, J.-C.; Hohenau, A.; Krenn, J. Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes. J. Phys. Chem. C 2013, 117, 25650–25658. [Google Scholar] [CrossRef]
- Ibañez, D.; Garoz-Ruiz, J.; Heras, A.; Colina, A. Simultaneous UV–visible absorption and Raman spectroelectrochemistry. Anal. Chem. 2016, 88, 8210–8217. [Google Scholar] [CrossRef] [Green Version]
- Thanos, I.C. An in-situ Raman spectroscopic study of the reduction of HNO3 on a rotating silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1986, 200, 231–247. [Google Scholar] [CrossRef]
- Itoh, T.; Maeda, T.; Kasuya, A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss. 2006, 132, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Joya, K.S.; de Groot, H.J. Electrochemical in situ surface enhanced Raman spectroscopic characterization of a trinuclear ruthenium complex, Ru-red. J. Raman Spectrosc. 2013, 44, 1195–1199. [Google Scholar] [CrossRef]
- Hy, S.; Chen, Y.-H.; Liu, J.-Y.; Rick, J.; Hwang, B.-J. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 2014, 256, 324–328. [Google Scholar] [CrossRef]
- Weng, X.; Feng, Z.; Guo, Y.; Feng, J.-J.; Hudson, S.P.; Zheng, J.; Ruan, Y.; Laffir, F.; Pita, I. Recyclable SERS substrates based on Fe 2 O 3–Ag hybrid hollow microspheres with crumpled surfaces. New J. Chem. 2016, 40, 5238–5244. [Google Scholar] [CrossRef]
- Sinha, G.; Depero, L.E.; Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Interfaces 2011, 3, 2557–2563. [Google Scholar] [CrossRef]
- Jeon, J.; Choi, N.; Chen, H.; Moon, J.-I.; Chen, L.; Choo, J. SERS-based droplet microfluidics for high-throughput gradient analysis. Lab A Chip 2019, 19, 674–681. [Google Scholar] [CrossRef]
- Sun, D.; Cao, F.; Tian, Y.; Li, A.; Xu, W.; Chen, Q.; Shi, W.; Xu, S. Label-free detection of multiplexed metabolites at single-cell level via a SERS-microfluidic droplet platform. Anal. Chem. 2019, 91, 15484–15490. [Google Scholar] [CrossRef]
- Cong, L.; Liang, L.; Cao, F.; Sun, D.; Yue, J.; Xu, W.; Liang, C.; Xu, S. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Microchim. Acta 2019, 186, 367. [Google Scholar] [CrossRef] [PubMed]
- Höhn, E.-M.; Panneerselvam, R.; Das, A.; Belder, D. Raman spectroscopic detection in continuous microflow using a chip-integrated silver electrode as an electrically regenerable surface-enhanced Raman spectroscopy substrate. Anal. Chem. 2019, 91, 9844–9851. [Google Scholar] [CrossRef]
- Leopold, N.; Lendl, B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Patze, S.; Huebner, U.; Liebold, F.; Weber, K.; Cialla-May, D.; Popp, J. SERS as an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Anal. Chim. Acta 2017, 949, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.M.; Gomes, B.F.; Bouzouma, H.; Danieli, E.; Blümich, B.; Colnago, L.A. Improving in operando low field NMR copper electrodeposition analyses using inductively coupled coils. Electrochim. Acta 2019, 298, 844–851. [Google Scholar] [CrossRef]
- Dupré, N.; Oliveri, J.; Degryse, J.; Martin, J.-F.; Guyomard, D. Characterization of the surface of positive electrodes for Li-ion batteries using 7 Li MAS NMR. Ionics 2008, 14, 203–207. [Google Scholar] [CrossRef]
- Dupré, N.; Cuisinier, M.; Guyomard, D. Electrode/electrolyte interface studies in lithium batteries using NMR. Electrochem. Soc. Interface 2011, 20, 61–67. [Google Scholar] [CrossRef]
- Li, D.; Keresztes, I.; Hopson, R.; Williard, P.G. Characterization of reactive intermediates by multinuclear diffusion-ordered NMR spectroscopy (DOSY). Acc. Chem. Res. 2008, 42, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Iwahara, J.; Clore, G.M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 2006, 440, 1227. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Dunsch, L. Spectroelectrochemistry of carbon nanostructures. ChemPhysChem 2007, 8, 974–998. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Su, H.; Chen, Z.; Yu, H.; Yu, H. Fabrication of electrochemically reduced graphene oxide modified gas diffusion electrode for in-situ electrochemical advanced oxidation process under mild conditions. Electrochim. Acta 2016, 222, 1501–1509. [Google Scholar] [CrossRef]
- Ashley, K.; Pons, S. Infrared spectroelectrochemistry. Chem. Rev. 1988, 88, 673–695. [Google Scholar] [CrossRef]
- Li, Z.; Haridas, N.; Rahman, M.; Kaaliveetil, S.; Cheng, Y.-H.; Chande, C.; Basuray, S. Flow-Based Compact Microfluidic Electrochemical Cell with Parafilm® Channels. Available online: https://ssrn.com/abstract=4352085 (accessed on 8 February 2023).
- Klod, S.; Dunsch, L. A combination of in situ ESR and in situ NMR spectroelectrochemistry for mechanistic studies of electrode reactions: The case of p-benzoquinone. Magn. Reson. Chem. 2011, 49, 725–729. [Google Scholar] [CrossRef]
- Bussy, U.; Giraudeau, P.; Silvestre, V.; Jaunet-Lahary, T.; Ferchaud-Roucher, V.; Krempf, M.; Akoka, S.; Tea, I.; Boujtita, M. In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites. Anal. Bioanal. Chem. 2013, 405, 5817–5824. [Google Scholar] [CrossRef]
- Richards, J.A.; Evans, D.H. Flow cell for electrolysis within the probe of a nuclear magnetic resonance spectrometer. Anal. Chem. 1975, 47, 964–966. [Google Scholar] [CrossRef]
- Zhang, X.; Zwanziger, J.W. Design and applications of an in situ electrochemical NMR cell. J. Magn. Reson. 2011, 208, 136–147. [Google Scholar] [CrossRef]
- Bussy, U.; Boujtita, M. Review of advances in coupling electrochemistry and liquid state NMR. Talanta 2015, 136, 155–160. [Google Scholar] [CrossRef]
- Prenzler, P.D.; Bramley, R.; Downing, S.R.; Heath, G.A. High-field NMR spectroelectrochemistry of spinning solutions: Simultaneous in situ detection of electrogenerated species in a standard probe under potentiostatic control. Electrochem. Commun. 2000, 2, 516–521. [Google Scholar] [CrossRef]
- Klod, S.; Ziegs, F.; Dunsch, L. In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes. Anal. Chem. 2009, 81, 10262–10267. [Google Scholar] [CrossRef]
- Huang, L.; Sorte, E.; Sun, S.-G.; Tong, Y. A straightforward implementation of in situ solution electrochemical 13 C NMR spectroscopy for studying reactions on commercial electrocatalysts: Ethanol oxidation. Chem. Commun. 2015, 51, 8086–8088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisseau, R.; Bussy, U.; Giraudeau, P.; Boujtita, M. In situ ultrafast 2D NMR spectroelectrochemistry for real-time monitoring of redox reactions. Anal. Chem. 2014, 87, 372–375. [Google Scholar] [CrossRef]
- Nunes, L.M.; Moraes, T.B.; Barbosa, L.L.; Mazo, L.H.; Colnago, L.A. Monitoring electrochemical reactions in situ using steady-state free precession 13C NMR spectroscopy. Anal. Chim. Acta 2014, 850, 1–5. [Google Scholar] [CrossRef]
- Gomes, B.F.; da Silva, P.F.; Lobo, C.M.S.; da Silva Santos, M.; Colnago, L.A. Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Anal. Chim. Acta 2017, 983, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Albert, K.; Dreher, E.L.; Straub, H.; Rieker, A. Monitoring electrochemical reactions by 13C NMR spectroscopy. Magn. Reson. Chem. 1987, 25, 919–922. [Google Scholar] [CrossRef]
- Webster, R.D. In situ electrochemical-NMR spectroscopy. Reduction of aromatic halides. Anal. Chem. 2004, 76, 1603–1610. [Google Scholar] [CrossRef]
- Rapta, P.; Zeika, O.; Rohde, D.; Hartmann, H.; Dunsch, L. Thiophene–Thiophene versus Phenyl–Phenyl Coupling in 2-(Diphenylamino)-Thiophenes: An ESR-UV/Vis/NIR Spectroelectrochemical Study. ChemPhysChem A Eur. J. Chem. Phys. Phys. Chem. 2006, 7, 863–870. [Google Scholar] [CrossRef]
- Antolini, E. Catalysts for direct ethanol fuel cells. J. Power Sources 2007, 170, 1–12. [Google Scholar] [CrossRef]
- Kamarudin, M.; Kamarudin, S.; Masdar, M.; Daud, W. Direct ethanol fuel cells. Int. J. Hydrog. Energy 2013, 38, 9438–9453. [Google Scholar] [CrossRef]
- Chen, J.; Xia, Z.; Li, H.; Li, Q.; Zhang, Y. Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim. Acta 2015, 166, 174–182. [Google Scholar] [CrossRef]
- Hinds, G.; Spada, F.; Coey, J.; Ní Mhíocháin, T.; Lyons, M. Magnetic field effects on copper electrolysis. J. Phys. Chem. B 2001, 105, 9487–9502. [Google Scholar] [CrossRef]
- Monzon, L.M.; Coey, J.M.D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review. Electrochem. Commun. 2014, 42, 38–41. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Lazarides, A.A.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L.; Schatz, G.C. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2000, 122, 4640–4650. [Google Scholar] [CrossRef]
- Quinten, M. Optical Properties of Nanoparticle Systems: Mie and Beyond; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Köhler, J.; Abahmane, L.; Wagner, J.; Albert, J.; Mayer, G. Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem. Eng. Sci. 2008, 63, 5048–5055. [Google Scholar] [CrossRef]
- Galindo, R.; Mazario, E.; Gutiérrez, S.; Morales, M.; Herrasti, P. Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. J. Alloy. Compd. 2012, 536, S241–S244. [Google Scholar] [CrossRef]
- Odegard, G.; Clancy, T.; Gates, T. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 2005, 46, 553–562. [Google Scholar] [CrossRef]
- Frogley, M.D.; Ravich, D.; Wagner, H.D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 2003, 63, 1647–1654. [Google Scholar] [CrossRef]
- Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006, 34, 237–247. [Google Scholar] [CrossRef]
- Alarcon, E.I.; Griffith, M.; Udekwu, K.I. Silver Nanoparticle Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dobrovolskaia, M.A.; Clogston, J.D.; Neun, B.W.; Hall, J.B.; Patri, A.K.; McNeil, S.E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180–2187. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R.G. Understanding electroanalytical measurements in authentic human saliva leading to the detection of salivary uric acid. Sens. Actuators B Chem. 2018, 262, 404–410. [Google Scholar] [CrossRef]
- Wong, K.K.; Cheung, S.O.; Huang, L.; Niu, J.; Tao, C.; Ho, C.M.; Che, C.M.; Tam, P.K. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem Chem. Enabling Drug Discov. 2009, 4, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Wang, C.; Rong, Z.; Ding, H.; Li, H.; Li, S.; Shao, N.; Dong, P.; Xiao, R. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl. Mater. Interfaces 2016, 8, 19958–19967. [Google Scholar] [CrossRef]
- Peh, C.; Ke, L.; Ho, G. Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater. Lett. 2010, 64, 1372–1375. [Google Scholar] [CrossRef]
- Hamm, S.C.; Basuray, S.; Mukherjee, S.; Sengupta, S.; Mathai, J.C.; Baker, G.A.; Gangopadhyay, S. Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes. J. Mater. Chem. A 2014, 2, 792–803. [Google Scholar] [CrossRef]
- Wilson, A.J.; Willets, K.A. Molecular plasmonics. Annu. Rev. Anal. Chem. 2016, 9, 27–43. [Google Scholar] [CrossRef]
- Wonner, K.; Evers, M.V.; Tschulik, K. The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy. Electrochim. Acta 2019, 301, 458–464. [Google Scholar] [CrossRef]
- Ivanova, O.S.; Zamborini, F.P. Electrochemical size discrimination of gold nanoparticles attached to glass/Indium− Tin-Oxide electrodes by oxidation in bromide-containing electrolyte. Anal. Chem. 2010, 82, 5844–5850. [Google Scholar] [CrossRef]
- Ward Jones, S.E.; Campbell, F.W.; Baron, R.; Xiao, L.; Compton, R.G. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment. J. Phys. Chem. C 2008, 112, 17820–17827. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Galperin, L.G.; Galperin, A.L. Mathematical modeling and numerical simulation of metal nanoparticles electrooxidation. J. Solid State Electrochem. 2010, 14, 981–988. [Google Scholar] [CrossRef]
- Cumberland, S.A.; Lead, J.R. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 2009, 1216, 9099–9105. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Tan, J.J.; Liew, K.Y.; Liu, H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A Chem. 2004, 221, 121–126. [Google Scholar] [CrossRef]
- Curry, A.; Nusz, G.; Chilkoti, A.; Wax, A. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt. Express 2005, 13, 2668–2677. [Google Scholar] [CrossRef]
- Mogensen, K.B.; Kneipp, K. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of surface screening effects. J. Phys. Chem. C 2014, 118, 28075–28083. [Google Scholar] [CrossRef]
- Hu, M.; Novo, C.; Funston, A.; Wang, H.; Staleva, H.; Zou, S.; Mulvaney, P.; Xia, Y.; Hartland, G.V. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 2008, 18, 1949–1960. [Google Scholar] [CrossRef]
- Mock, J.; Barbic, M.; Smith, D.; Schultz, D.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759. [Google Scholar] [CrossRef]
- Gu, X.Y.; Liu, J.J.; Gao, P.F.; Li, Y.F.; Huang, C.Z. Gold triangular nanoplates based single-particle dark-field microscopy assay of pyrophosphate. Anal. Chem. 2019, 91, 15798–15803. [Google Scholar] [CrossRef]
- Song, K.; Lee, H.; Lee, M.; Park, J.Y. Plasmonic hot hole-driven water splitting on Au nanoprisms/p-type GaN. ACS Energy Lett. 2021, 6, 1333–1339. [Google Scholar] [CrossRef]
- Pan, S.; Li, X.; Yadav, J. Single Nanoparticle Spectroelectrochemistry Studies Enabled by Localized Surface Plasmon Resonance. Phys. Chem. Chem. Phys. 2021, 23, 19120–19129. [Google Scholar] [CrossRef]
- Gu, X.Y.; Gao, P.F.; Zou, H.Y.; Liu, J.H.; Li, Y.F.; Huang, C.Z. The localized surface plasmon resonance induced edge effect of gold regular hexagonal nanoplates for reaction progress monitoring. Chem. Commun. 2018, 54, 13359–13362. [Google Scholar] [CrossRef]
- Farré, E.M.; Geigenberger, P.; Willmitzer, L.; Trethewey, R.N. A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol. 2000, 123, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, K.M.; Okou, D.T.; Zwick, E.M. Applying rapid genome sequencing technologies to characterize pathogen genomes. Anal. Chem. 2008, 80, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.A.; Krishnamurthy, R. Heterogeneous Pyrophosphate-Linked DNA–Oligonucleotides: Aversion to DNA but Affinity for RNA. Chem.—A Eur. J. 2018, 24, 6837–6842. [Google Scholar] [CrossRef]
- Young, E.W.; Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 2010, 39, 1036–1048. [Google Scholar] [CrossRef]
- Ramalingam, S.; Chand, R.; Singh, C.B.; Singh, A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens. Bioelectron. 2019, 135, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Triroj, N.; Saensak, R.; Porntheeraphat, S.; Paosawatyanyong, B.; Amornkitbamrung, V. Diamond-like carbon thin film electrodes for microfluidic bioelectrochemical sensing platforms. Anal. Chem. 2020, 92, 3650–3657. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Deutsch, J.M.; Xiao, L.; Schultz, Z.D. Online liquid chromatography–sheath-flow surface enhanced Raman detection of phosphorylated carbohydrates. Anal. Chem. 2018, 90, 11062–11069. [Google Scholar] [CrossRef] [PubMed]
- Chikkaveeraiah, B.V.; Liu, H.; Mani, V.; Papadimitrakopoulos, F.; Rusling, J.F. A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochem. Commun. 2009, 11, 819–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, E.; Tran, V.-K.; Son, S.E.; Hur, W.; Choi, H.; Seong, G.H. Characterization of Au@ PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sens. Actuators B Chem. 2019, 294, 166–176. [Google Scholar] [CrossRef]
- Kaaliveetil, S.; Yang, J.; Alssaidy, S.; Li, Z.; Cheng, Y.-H.; Menon, N.H.; Chande, C.; Basuray, S. Microfluidic Gas Sensors: Detection Principle and Applications. Micromachines 2022, 13, 1716. [Google Scholar] [CrossRef] [PubMed]
- Garoz-Ruiz, J.; Heras, A.; Palmero, S.; Colina, A. Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal. Chem. 2015, 87, 6233–6239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Grace, H.M.; Flowers, P.A. Simple microfluidic device for spectroelectrochemistry. Microchem. J. 2022, 181, 107718. [Google Scholar] [CrossRef]
- Kaim, W.; Schwederski, B.; Dogan, A.; Fiedler, J.; Kuehl, C.J.; Stang, P.J. Metalla-supramolecular rectangles as electron reservoirs for multielectron reduction and oxidation. Inorg. Chem. 2002, 41, 4025–4028. [Google Scholar] [CrossRef] [PubMed]
- Premasiri, W.R.; Chen, Y.; Fore, J.; Brodeur, A.; Ziegler, L.D. SERS biomedical applications: Diagnostics, forensics, and metabolomics. In Frontiers and Advances in Molecular Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 327–367. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chande, C.; Cheng, Y.-H.; Basuray, S. Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics. Micromachines 2023, 14, 667. https://doi.org/10.3390/mi14030667
Li Z, Chande C, Cheng Y-H, Basuray S. Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics. Micromachines. 2023; 14(3):667. https://doi.org/10.3390/mi14030667
Chicago/Turabian StyleLi, Zhenglong, Charmi Chande, Yu-Hsuan Cheng, and Sagnik Basuray. 2023. "Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics" Micromachines 14, no. 3: 667. https://doi.org/10.3390/mi14030667
APA StyleLi, Z., Chande, C., Cheng, Y. -H., & Basuray, S. (2023). Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics. Micromachines, 14(3), 667. https://doi.org/10.3390/mi14030667