A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm
Abstract
:1. Introduction
2. Strategy and Design
3. Materials and Methods
4. Discussions
4.1. Photograph and SEM Images
4.2. Measured SPL
4.3. Silent Alarm in Dangerous Situations
4.4. Compared with Previous Works
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.R.; Ma, Y.F.; Zheng, Q.C.; Cao, K.; Lu, Y.; Xie, H.K. Review of Recent Development of MEMS Speakers. Micromachines 2021, 12, 1257. [Google Scholar] [CrossRef]
- Wang, H.R.; Chen, Z.F.; Xie, H.K. A High-SPL Piezoelectric MEMS Loud Speaker Based on Thin Ceramic PZT. Sens. Actuator A Phys. 2020, 309, 112018. [Google Scholar] [CrossRef]
- Je, S.-S.; Kim, J.; Harrison, J.C.; Kozicki, M.N.; Chae, J. In Situ Tuning of Omnidirectional Microelectromechanical-Systems Microphones to Improve Performance Fit in Hearing Aids. J. Appl. Phys. Lett. 2008, 93, 123501. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.T.; Han, J.-H.; Lee, J.H.; Cho, S.; Seong, K.-W.; Choi, M.; Cho, J.-H. Realization of a High Sensitivity Microphone for a Hearing Aid Using a Graphene–PMMA Laminated Diaphragm. ACS Appl. Mater. Interfaces 2017, 9, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.; Malik, P.; Das, N.; Mandal, D. Surface Potential Tuned Single Active Material Comprised Triboelectric Nanogen-erator for a High Performance Voice Recognition Sensor. Small 2022, 18, 2201331. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. Understanding Vision-Based Continuous Sign Language Recognition. Multimed. Tools Appl. 2020, 79, 22177–22209. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, L.; Wang, H. Updating the Silent Speech Challenge Benchmark with Deep Learning. Speech Commun. 2018, 98, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chao, M.; Wan, P.; Zhang, L. A Wearable Breathable Pressure Sensor From Metal-Organic Framework Derived Nanocomposites for Highly Sensitive Broad-Range Healthcare Monitoring. Nano Energy 2020, 70, 104560. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Zhang, P.; Chen, Y.C. Human Motion State Recognition Based on Flexible, Wearable Capacitive Pressure Sensors. Micromachines 2021, 12, 1219. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, T.; Xu, Q.D.; Shi, Y.Z.; Yang, B.; Liu, J.Q. Wearable Multifunctional Piezoelectric MEMS Device for Motion Monitoring, Health Warning, and Earphone. Nano Energy. 2021, 89, 106324. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Sun, S.; Xu, C.; Wang, Y.; Tian, Y.; Liu, A.; Hou, X.; Chai, H.; Zhang, Z.; Wu, H. The Frequency-Response Behaviour of Flexible Piezoelectric Devices for Detecting the Magnitude and Loading Rate of Stimuli. J. Mater. Chem. C 2021, 9, 584–594. [Google Scholar] [CrossRef]
- Rehder, J.; Rombach, P.; Hansen, O. Magnetic Flux Generator for Balanced Membrane Loudspeaker. Sens. Actuator A Phys. 2002, 97, 61–67. [Google Scholar] [CrossRef]
- Shahosseini, I.; Lefeuvre, E.; Moulin, J.; Martincic, E.; Woytasik, M.; Lemarquand, G. Optimization and Microfabrication of High Performance Silicon-Based MEMS Microspeaker. IEEE Sens. J. 2013, 13, 273–284. [Google Scholar] [CrossRef]
- Garud, M.V.; Pratap, R. A Novel MEMS Speaker with Peripheral Electrostatic Actuation. J. Microelectromech. Syst. 2020, 29, 592–599. [Google Scholar] [CrossRef]
- Langa, B.S.; Ehrig, L.; Stolz, M.; Schuffenhauer, D. Concept and Proof for an All-Silicon MEMS Micro Speaker Utilizing Air Chambers. Microsyst. Nanoeng. 2019, 5, 43. [Google Scholar]
- Ozdogan, M.; Towfighian, S.; Miles, R.N. Modeling and Characterization of a Pull-in Free MEMS Microphone. IEEE Sens. J. 2020, 20, 6314–6323. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.R.; Prasad, M. Piezoelectric MEMS Based Acoustic Sensors: A Review. Sens. Actuator A-Phys. 2020, 301, 31. (In English) [Google Scholar] [CrossRef]
- Kim, S.; Zhang, X.; Daugherty, R.; Lee, E.; Kunnen, G.; Allee, D.R.; Forsythe, E. Chae, Microelectromechanical Systems (MEMS) Based-Ultrasonic Electrostatic Actuators on a Flexible Substrate. IEEE Electron Device Lett. 2012, 33, 1072–1074. [Google Scholar] [CrossRef]
- Wang, C.; Hosomi, T.; Nagashima, K.; Takahashi, T.; Zhang, G.; Kanai, M.; Yoshida, H.; Yanagida, T. Phosphonic Acid Modified ZnO Nanowire Sensors: Directing Reaction Pathway of Volatile Carbonyl Compounds. ACS Appl. Mater. Interfaces. 2020, 12, 44265–44272. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN Piezoelectric Thin Films for Energy Harvesting and Acoustic Devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- George, J.P.; Smet, P.F.; Botterman, J.; Bliznuk, V.; Woestenborghs, W.; Van Thourhout, D.; Neyts, K.; Beeckman, J. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices. ACS Appl. Mater. Interfaces. 2015, 7, 13350–13359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef]
- Hwang, G.T.; Park, H.; Lee, J.H.; Oh, S.; Park, K.I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C.K.; No, K.; et al. Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester. Adv. Mater. 2014, 26, 4880–4887. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yeh, Y.-w.; Poirier, G.; McAlpine, M.C.; Register, R.A.; Yao, N. Flexible Piezoelectric PMN–PT Nanowire-Based Nanocomposite and Device. Nano Lett. 2013, 13, 2393–2398. [Google Scholar] [CrossRef]
- Wu, F.; Cai, W.; Yeh, Y.-W.; Xu, S.; Yao, N. Energy Scavenging Based on A Single-Crystal PMN-PT Nanobelt. Sci. Rep. 2016, 6, 22513. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zu, J. Comparison of PZN-PT, PMN-PT Single Crystals and PZT Ceramic for Vibration Energy Harvesting. Energy Convers. Manag. 2016, 122, 321–329. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Wu, J.; Xin, X.; Li, Z.; Xiaoting, Y.; Shen, X.; Dong, S. Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Adv. Mater. Technol. 2019, 5, 1900716. [Google Scholar] [CrossRef]
- Cheng, H.; Lo, S.; Wang, Y.; Chen, Y.; Lai, W.; Hsieh, M.; Wu, M.; Fang, W. Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement. In Proceedings of the IEEE International Conference on Micro Electro Mechan-ical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 513–516. [Google Scholar]
- Nguyen, M.D.; Houwman, E.P.; Rijnders, G. Large Piezoelectric Strain with Ultra-Low Strain Hysteresis in Highly C-Axis Oriented Pb(Zr0.52Ti0.48)O3 Films with Columnar Growth on Amorphous Glass Substrates. Sci. Rep. 2017, 7, 12915. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zhang, G.; Ding, J.; Wang, R.; Pei, Y.; Ren, Z.; Shang, Z.; Xue, C.; Zhang, W. Design and Implementation of Two-Component Cilia Cylinder MEMS Vector Hydrophone. Sens. Actuator A Phys. 2018, 277, 142–149. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, T.; Xu, Q.D.; Shi, Y.Z.; Yang, B.; Liu, J.Q. Piezoelectric MEMS Speaker with Rigid-Flexible-Coupling Actuation Layer. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 620–623. [Google Scholar]
- Wang, Q.; Yi, Z.; Ruan, T.; Xu, Q.; Yang, B.; Liu, J. Obtaining High SPL Piezoelectric MEMS Speaker via a Rigid-Flexible Vibration Coupling Mechanism. J. Microelectromech. Syst. 2021, 30, 725–732. [Google Scholar] [CrossRef]
- Barker, J.P.; Marxer, R.; Vincent, E. Multi-Microphone Speech Recognition in Everyday Environments. Comput. Speech Lang. 2017, 46, 386–387. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Huang, Z.; Wang, X. Automatic Speech Recognition in Different Languages Using High-Density Surface Electromyography Sensors. IEEE Sens. J. 2020, 99, 14155–14167. [Google Scholar]
- Wang, Q.; Ruan, T.; Xu, Q.D.; Shi, Y.Z.; Yang, B.; Liu, J.Q. Piezoelectric Mems Unvoiced Speech-Recognition Sensor Based on Oral Airflow. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 63–66. [Google Scholar]
- Wang, H.; Godara, M.; Chen, Z.; Xie, H. A One-Step Residue-Free Wet Etching Process of Ceramic PZT For Piezoelectric Transducers. Sens. Actuator A Phys. 2019, 290, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Liu, J.-S.; Ren, T.; Liu, Y.X.; Liu, L.T.; Li, Z.J. Study of Fabrication and Etching Processes of PZT Thin Films on Silicon. Piezoelectrics Acoustooptics 2001, 23, 290–292. [Google Scholar]
- Kuo, W.-C.; Chen, C.-W. Fabrication of Parylene-Based High-Aspect-Ratio Suspended Structure Using a Silicon-on-Insulator Wafer. Jpn. J. Appl. Phys. 2013, 52, 036501. [Google Scholar] [CrossRef]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.J.; Meng, E. Micromachining of Parylene C for BioMEMS. Polymer. Adv. Technol. 2016, 27, 564–576. [Google Scholar] [CrossRef]
- Jin, S.W.; Jeong, Y.R.; Park, H.; Keum, K.; Lee, G.; Lee, Y.H.H.; Kim, M.S.; Ha, J.S. A Flexible Loudspeaker Using the Movement of Liquid Metal Induced by Electrochemically Controlled Interfacial Tension. Small 2019, 15, 1905263. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, J.A.; Gomez-Alanis, A.; Martín-Doas, J.M.; Pérez-Córdoba, J.L.; Gomez, A.M. Silent Speech Interfaces for Speech Restoration: A Review. IEEE Access 2020, 8, 177995. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, E.; Chung, J.W.; Cho, H.Y.; Jeong, S.; Kim, H.; Jang, D.; Kim, H.; Yoon, J.; Lee, G.H.; et al. Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS Appl. Mater. Interfaces 2022, 14, 54157–54169. [Google Scholar] [CrossRef] [PubMed]
- Sahs, J.; Khan, L. A Machine Learning Approach to Android Malware Detection. In Proceedings of the Intelligence and Security Informatics Conference (EISIC), Odense, Denmark, 22–24 August 2012; pp. 141–147. [Google Scholar]
- Xiao, W.; Wang, D.; Bao, L. Emotional State Classification from EEG Data Using Machine Learning Approach. Neurocomputing 2014, 129, 94–106. [Google Scholar]
Paper | Structure | Radius (Side Length) | Main Supporting Layer | Thickness of Parylene C | Role of Parylene C | Minimum SPL (20 Hz-20 kHz @ 2 V) | Appilications |
---|---|---|---|---|---|---|---|
[10] | Cantilever beam array | 2 mm | Si | 0.5 μm | Close the gap | ~59 dB | Speaker |
[33] | Improved cantilever beam array | 2 mm | Si | 0.5 μm | Close the gap | ~55 dB | Speaker, motion monitoring, health warning |
[36] | Cantilever beam array | 2 mm | Si | 0.2 μm | Isolate water vapor | No | Silent speech recognition |
[32] | Central circle surrounded by concentric double rings | 1.5 mm | Parylene C | 10 μm | Supporting layer | ~52 dB | Speaker |
This work | Central circle surrounded by concentric double rings | 2 mm | Parylene C | 10 μm | Supporting layer | ~62 dB | Speaker, Silent alarm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ruan, T.; Xu, Q.; Hu, Z.; Yang, B.; You, M.; Lin, Z.; Liu, J. A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm. Micromachines 2023, 14, 702. https://doi.org/10.3390/mi14030702
Wang Q, Ruan T, Xu Q, Hu Z, Yang B, You M, Lin Z, Liu J. A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm. Micromachines. 2023; 14(3):702. https://doi.org/10.3390/mi14030702
Chicago/Turabian StyleWang, Qi, Tao Ruan, Qingda Xu, Zhiyong Hu, Bin Yang, Minmin You, Zude Lin, and Jingquan Liu. 2023. "A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm" Micromachines 14, no. 3: 702. https://doi.org/10.3390/mi14030702
APA StyleWang, Q., Ruan, T., Xu, Q., Hu, Z., Yang, B., You, M., Lin, Z., & Liu, J. (2023). A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm. Micromachines, 14(3), 702. https://doi.org/10.3390/mi14030702