Robust, Superhydrophobic Aluminum Fins with Excellent Mechanical Durability and Self-Cleaning Ability
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Superhydrophobic Surfaces
2.3. Superhydrophobic Aluminum-Based Surface Performance Characteristics
2.4. Dust Removal Test
3. Results and Discussion
3.1. Surface Micro-Nanostructures
3.2. Surface Wettability Analysis
3.3. Dust Removal Experiments
3.3.1. Gravity on Dust-Containing Droplets
3.3.2. Capillary Forces on Dust-Containing Droplets [40]
3.3.3. Van der Waals Forces on Dust-Containing Droplets [41]
3.4. Vickers Hardness Analysis
3.5. Surface Stability and Durability Analysis of Specimens
3.6. Surface XPS Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | Hamaker’s constants |
R | Equivalent radius (m) |
F | Adhesion force (N) |
Ff | The static friction force (N) |
Fc | Capillary force (N) |
Fn | The support force (N) |
Fvdw | Van der Waals force (N) |
G | Gravitational force (N) |
G1 | Horizontal component of the gravitational force (N) |
G2 | Vertical component of gravity (N) |
α | Tilt angle (°) |
M | Mass (mg) |
ρ | Density (kg/m3) |
θ | Surface tension of particles (N/m) |
rms | Root means square roughness |
γs | Surface tension at the wall (N/m) |
γp | Wetting contact angle (°) |
γ | Surface tension of the liquid (N/m) |
z | Vertical distance (m) |
g | Gravitational acceleration |
References
- Qin, H.; Li, W.; Dong, B.; Zhao, Z.; Zhu, W. Experimental study of the characteristic of frosting on low-temperature air cooler. Exp. Therm. Fluid Sci. 2014, 55, 106–114. [Google Scholar]
- Zhang, X.; Ge, Y. The effect of heat conduction through fins on the performance of finned-tube CO supercritical gas coolers2. Int. J. Heat Mass Transf. 2021, 181, 121908. [Google Scholar] [CrossRef]
- Zhang, K.; Li, M.J.; Liu, H.; Xiong, J.G.; He, Y.L. Experimental and numerical study, and comparison of performance for herringbone wavy fin and enhanced fin with convex-strips in fin-and-tube heat exchanger. Int. J. Heat Mass Transf. 2021, 175, 121390. [Google Scholar] [CrossRef]
- Banu, P.A.; Lohith, D.R.; Kalyan, M.P.; Vempati, D.S.; Sai, B.H. Simulation of fin and tube heat exchanger and validation with CFD analysis. Mater. Today: Proc. 2022, 66, 1471–1476. [Google Scholar]
- Zhan, F.; Ding, G.; Liu, L. Experimental investigation on water vapor permeability in porous dust layers on cold fin surface of heat exchanger. Int. J. Refrig. 2022, 141, 43–53. [Google Scholar] [CrossRef]
- Stocco, A.; Nobili, M. A comparison between liquid drops and solid particles in partial wetting. Adv. Colloid Interface Sci. 2017, 247, 223–233. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers. Int. J. Heat Mass Transf. 2019, 141, 580–603. [Google Scholar] [CrossRef]
- Zhan, F.; Zhuang, D.; Ding, G.; Tang, J. Numerical model of particle deposition on fin surface of heat exchanger. Int. J. Refrig. 2016, 72, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Zhan, F.; Ding, G.; Zhuang, D. Numerical model of particle deposition on wet fin surfaces of heat exchanger under dehumidifying conditions. Int. J. Heat Mass Transf. 2020, 149, 119258. [Google Scholar] [CrossRef]
- Wang, F.; Tang, R.; Wang, Z.; Yang, W. Experimental study on anti-frosting performance of superhydrophobic surface under high humidity conditions. Appl. Therm. Eng. 2022, 217, 119193. [Google Scholar] [CrossRef]
- Cao, J.; Lv, Z.; Liao, B.; Chen, D.; Tong, W.; Zong, Z.; Li, C.; Xiang, T. In-situ fabrication of superhydrophobic surface on copper with excellent anti-icing and anti-corrosion properties. Mater. Today Commun. 2022, 33, 104633. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Wang, X.; Luo, Z.; Liao, J.; Tao, Y.; Xu, M. Synergistic effect of micro–nano surface structure and surface grafting on the efficient fabrication of durable super-hydrophobic high-density polyethylene with self-cleaning and anti-icing properties. Appl. Surf. Sci. 2023, 611, 155654. [Google Scholar] [CrossRef]
- Jian, Y.; Gao, H.; Yan, Y. Fabrication of a superhydrophobic micron-nanoscale hierarchical structured surface for delayed icing and reduced frosting. Surf. Interfaces 2022, 34, 102353. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Cai, Y.; Luo, X.; Wang, B.; Song, Q.; Liu, Z. Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction. Appl. Surf. Sci. 2023, 615, 156403–156404. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Zhang, Y.C.; Mou, L.W.; Liu, M.J.; Fan, L.W. Substrate thermal conductivity-mediated droplet dynamics for condensation heat transfer enhancement on honeycomb-like superhydrophobic surfaces. Int. J. Heat Mass Transf. 2022, 183, 122207. [Google Scholar] [CrossRef]
- Ranjan, D.; Zou, A.; Maroo, S. Durable and regenerative superhydrophobic surface using porous nanochannels. Chem. Eng. J. 2022, 455, 140527. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Johnson, D.; Ackermann, L.; Figgis, B.; Ayoub, M. Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol. Energy Mater. Sol. Cells 2019, 191, 413–421. [Google Scholar] [CrossRef]
- Dong, Z.; Chang, L.; Kai, Y.; Chengtao, Y.; Yongqian, S.; Zhoujian, A.; Jinlong, J. Droplet cleaning method and water consumption analysis for superhydrophobic solar photovoltaic glass. Sol. Energy 2022, 235, 94–104. [Google Scholar] [CrossRef]
- Yuan, W.; Liao, Z.; He, K.; Liu, Q.; Huang, S.M. An experimental investigation on condensation-induced self-cleaning of dust on superhydrophobic surface. Appl. Surf. Sci. 2021, 566, 150702. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, D.; Ding, G. Effect of surface wettability of fins on dust removal by condensate water. Int. J. Heat Mass Transf. 2019, 130, 1260–1271. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Wang, G.; Zhang, J.; Zhou, C. Investigation on the differences of surface cleaning properties of series of superhydrophobic aluminum alloys. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129614. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, Y.; Li, W.; Ma, L.; Li, Z.; Jia, B.; Xu, Z.; Yu, Z.; Liang, P. Anti-corrosion superhydrophobic surface of LPBF- NiTi alloy fabricated by nanosecond laser machining. Opt. Laser Technol. 2023, 158, 108858. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Yang, J.; Yue, Y.; Zhang, H. Fabrication of superhydrophobic surface on stainless steel by two-step chemical etching. Chem. Phys. Lett. 2022, 797, 139567. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yuan, Y.; Liao, R.J.; Xiang, H.Y.; Wang, L.; Yu, Q.; Zhang, C. Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance. Surf. Interfaces 2022, 28, 101588. [Google Scholar] [CrossRef]
- Ansari, A.; Nouri, N.M. A one step self-cleaning surface with robust superhydrophobic and photocatalytic properties: Electrostatic sprayed fluorinated ethylene propylene mixed with nano TiO2–SiO2 particles. Ceram. Int. 2023, 49, 57–66. [Google Scholar] [CrossRef]
- Sun, R.; Zhao, J.; Li, Z.; Mo, J.; Pan, Y.; Luo, D. Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification. Prog. Organ. Coat. 2019, 133, 77–84. [Google Scholar] [CrossRef]
- Tong, W.; Cui, L.; Qiu, R.; Yan, C.; Liu, Y.; Wang, N.; Xiong, D. Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates. J. Mater. Sci. Technol. 2021, 89, 59–67. [Google Scholar] [CrossRef]
- Sataeva, N.E.; Boinovich, L.B.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors. Surf. Coat. Technol. 2020, 397, 125993. [Google Scholar] [CrossRef]
- Wang, M.; Zi, Y.; Zhu, J.; Huang, W.; Zhang, Z.; Zhang, H. Construction of super-hydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications. Chem. Eng. J. 2021, 417, 129265. [Google Scholar] [CrossRef]
- Shu, Y.; Lu, X.; Liang, Y.; Su, W.; Gao, W.; Yao, J.; Niu, Z.; Lin, Y.; Xie, Y. Nanosecond laser fabrication of superhydrophobic copper and anti-frost surface on copper. Surf. Coat. Technol. 2022, 441, 128514. [Google Scholar] [CrossRef]
- Tyagi, R.; Das, A.; Mandal, A. Formation of superhydrophobic surface with enhanced hardness and wear resistance by electrical discharge coating process. Tribol. Int. 2021, 157, 106897. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Mo, J.; Sun, R.; Li, Z.; Guo, Z. Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 205–212. [Google Scholar] [CrossRef]
- Tong, W.; Xiong, D. Direct laser texturing technique for metal surfaces to achieve superhydrophobicity. Mater. Today Phys. 2022, 26, 100651. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Y.; Ding, J.; Wang, Q.; Chen, Q. Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 2012, 258, 4063–4068. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zou, Q.; Chen, J.; Zhao, X.; Xie, Y.; Hu, Y.; Yang, K. Abrasion mechanisms of superhydrophobic coating surfaces wetted in Wenzel state. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130585. [Google Scholar] [CrossRef]
- Khan, M.Z.; Militky, J.; Petru, M.; Tomková, B.; Ali, A.; Tören, E.; Perveen, S. Recent advances in superhydrophobic surfaces for practical applications: A review. Eur. Polym. J. 2022, 178, 111481. [Google Scholar] [CrossRef]
- Valipour NBirjandi, F.; Sargolzaeic, J. Super-non-wettable surfaces: A review. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 448, 93–106. [Google Scholar] [CrossRef]
- Gong, B.; Ma, L.; Guan, Q.; Tan, R.; Wang, C.; Wang, Z.; Wang, K.; Liu, C.; Deng, C.; Song, W.; et al. Preparation and particle size effects study of sustainable self-cleaning and durable silicon materials with superhydrophobic surface performance. J. Environ. Chem. Eng. 2022, 10, 107884. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, L.; Qi, H.; Cai, R. Self-cleaning of Surfaces: The Role of Surface Wettability and Dust Types. Sci. Rep. 2016, 6, 38239. [Google Scholar] [CrossRef] [Green Version]
- Butt, H.; Kappl, M. Normal capillary forces. Adv. Colloid Interface Sci. 2009, 146, 48–60. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Y. Correlation between the normal position of a particle on a rough surface and the van der Waals force. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 585, 124096. [Google Scholar] [CrossRef]
- Moutinho, H.R.; Jiang, C.S.; To, B.; Perkins, C.; Muller, M.; Al-Jassim, M.M.; Simpson, L. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size. Sol. Energy Mater. Sol. Cells 2017, 172, 145–153. [Google Scholar] [CrossRef]
- Yang, S.; Luo, S.; Yang, L.; Yang, X. A durable superhydrophobic surface with protective nest-like micro-containers. Mater. Today: Commun. 2022, 33, 104460. [Google Scholar] [CrossRef]
- Rico, V.; Mora, J.; García, P.; Agüero, A.; Borrás, A.; González-Elipe, A.R.; López-Santos, C. Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains. Int. J. Heat Mass Transf. Appl. Mater. Today 2020, 21, 100815. [Google Scholar] [CrossRef]
Composition | Si | Al | Fe | Cu |
---|---|---|---|---|
Mass fraction/% | 0.003 | 99.99 | 0.003 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.; Lu, X.; Shu, Y.; Liu, X.; Gao, W.; Yao, J.; Niu, Z.; Xie, Y. Robust, Superhydrophobic Aluminum Fins with Excellent Mechanical Durability and Self-Cleaning Ability. Micromachines 2023, 14, 704. https://doi.org/10.3390/mi14030704
Su W, Lu X, Shu Y, Liu X, Gao W, Yao J, Niu Z, Xie Y. Robust, Superhydrophobic Aluminum Fins with Excellent Mechanical Durability and Self-Cleaning Ability. Micromachines. 2023; 14(3):704. https://doi.org/10.3390/mi14030704
Chicago/Turabian StyleSu, Wenbo, Xiangyou Lu, Yunxiang Shu, Xianshuang Liu, Wen Gao, Jianjie Yao, Zhuang Niu, and Yuanlai Xie. 2023. "Robust, Superhydrophobic Aluminum Fins with Excellent Mechanical Durability and Self-Cleaning Ability" Micromachines 14, no. 3: 704. https://doi.org/10.3390/mi14030704
APA StyleSu, W., Lu, X., Shu, Y., Liu, X., Gao, W., Yao, J., Niu, Z., & Xie, Y. (2023). Robust, Superhydrophobic Aluminum Fins with Excellent Mechanical Durability and Self-Cleaning Ability. Micromachines, 14(3), 704. https://doi.org/10.3390/mi14030704