Fluorescence Properties of ZnOQDs-GO-g-C3N4 Nanocomposites
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Reagents
2.2. Metal Ion Detection
2.2.1. Selective Detection of Metal Ions Based on ZCGQDs
- The inorganic compounds containing Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Mg2+, Ni2+, and Pb2+ were used as metal ion sources, dissolved in deionized water to prepare 50 mM solutions of different metal ions;
- A pipette was used to accurately pipette 0.005 mL of different metal ion solutions of the same concentration configured in step a;
- Then, 4.995 mL of the prepared ZCGQDs composite sample was taken;
- Various metal ions were added to the ZCGQDs composite sample to obtain a 50 μM colloidal solution of different metal ions and left for 20 min;
- A quartz cuvette was used, with a diameter of 1 cm and transparent on all sides, and the different metal ion colloid solutions in step d were added;
- The mixed colloidal solutions were scanned to obtain their fluorescence spectra and intensity values. To reduce systematic errors, each mixed colloidal solution was scanned three times, and the average was calculated as the final intensity result.
2.2.2. Determination of the Linear Relationship between ZCGQDs and Target Metal Ion Cu2+
- Cu2+ was derived from the CuCl2·2H2O inorganic compound, which was dissolved in deionized water, and several solutions with different concentrations of Cu2+ were prepared using the stepwise dilution method;
- A pipette was used to accurately pipette 0.005 mL of Cu2+ solutions at the different concentrations configured in step a;
- Then, 4.995 mL samples of the ZCGQDs composites were taken;
- Different concentrations of Cu2+ solution were added to the ZCGQDs composite sample, mixed and shaken well to obtain a colloidal solution, which was left for 15 min;
- A quartz cuvette was used, with a diameter of 1 cm and transparent on all sides, and the colloidal solutions with different concentrations of Cu2+ in step d were added;
- The mixed colloidal solutions were scanned to obtain their fluorescence spectra and intensity values. In order to reduce systematic errors, each mixed colloidal solution was scanned three times, and the average intensity value was used as the representative.
2.3. Experimental Optimization
3. Results and Discussion
3.1. Effect of APTES Concentration Used to Synthesize ZCGQDs
3.2. Effect of Mixing Time of ZCGQDs and Cu2+
3.3. Selectivity of ZCGQDs to Metal Ions
3.4. Anti-Interference Performance of ZCGQDs on Cu2+
3.5. Linear Relationship between ZCGQDs and Cu2+ Concentration
3.6. Analysis of Fluorescence Quenching Mechanism of ZCGQDs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.R.; Chen, H.Y.; Zhang, W.; Pan, J.X.L.; Dang, F.Q.; Zhang, Z.Q.; Zhang, J. Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2 fluorescence probe. Sens. Actuators B Chem. 2017, 244, 31–37. [Google Scholar] [CrossRef]
- Qian, J.; Wang, K.; Wang, C.; Ren, C.; Liu, Q.; Hao, N.; Wang, K. Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of CdTe quantum dots-based hybrid probe. Sens. Actuators B Chem. 2017, 241, 1153–1160. [Google Scholar] [CrossRef]
- Gui, W.; Wang, H.; Liu, Y.; Ma, Q. Ratiometric fluorescent sensor with molecularly imprinted mesoporous microspheres for malachite green detection. Sens. Actuators B Chem. 2018, 266, 685–691. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyay, Y.; Bera, R.K.; Sahoo, S.K. Vitamin B6 cofactors guided highly selective fluorescent turn-on sensing of histamine using beta-cyclodextrin stabilized ZnO quantum dots. Food Chem. 2020, 320, 126611. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhao, Q.; Zhou, R.; Linag, Y.C.; Zhao, W.B.; Shan, C.X. Ratiometric fluorescence sensor based on europium-grafted ZnO quantum dots for visual and colorimetric detection of tetracycline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119901. [Google Scholar] [CrossRef]
- Omata, T.; Tani, Y.; Kobayashi, S.; Takahashi, K.; Miyanaga, A.; Maeda, Y.; Otsuka-Yao-Matsuo, S. Ultraviolet electroluminescence from colloidal ZnO quantum dots in an all-inorganic multilayer light-emitting device. Appl. Phys. Lett. 2012, 100, 061104. [Google Scholar] [CrossRef]
- Moyen, E.; Kim, J.H.; Kim, J.; Jinag, J. ZnO nanoparticles for quantum-dot-based light-emitting diodes. ACS Appl. Nano Mater. 2020, 3, 5203–5211. [Google Scholar] [CrossRef]
- Wang, J.; Lee, J.S.; Kim, D.; Zhu, L. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interfaces 2017, 9, 39971–39984. [Google Scholar] [CrossRef]
- Tu, Z.; Yang, G.; Song, H.; Wang, C. Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 439–446. [Google Scholar] [CrossRef]
- Fernando, J.F.S.; Zhang, C.; Firestein, K.L.; Nerkar, J.Y.; Golberg, D.V. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. J. Mater. Chem. A 2019, 7, 8460–8471. [Google Scholar] [CrossRef]
- Tan, Q.; Kong, X.; Guan, X.; Wang, C.; Xu, B. Crystallization of zinc oxide quantum dots on graphene sheets as an anode material for lithium ion batteries. Crystengcomm 2020, 22, 320–329. [Google Scholar] [CrossRef]
- Ma, X.; Li, Z.; Chen, D.; Li, Z.; Yan, L.; Li, S.; Liang, C.; Ling, M.; Peng, X. Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery. J. Electroanal. Chem. 2019, 848, 113275. [Google Scholar] [CrossRef]
- Jia, Z.; Misra, R.D.K. Tunable ZnO quantum dots for bioimaging: Synthesis and photoluminescence. Mater. Technol. 2013, 28, 221–227. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Z.; Tian, M.; Miao, H.; Zhang, H.; Sun, J. UVexcitation NOz gas sensor sensitized by ZnO quantum dotsatroomtemperature. Sens. Actuators B Chem. 2018, 259, 526–531. [Google Scholar] [CrossRef]
- Zhao, D.; Song, H.; Hao, L.; Liu, X.; Zhang, L.; Lv, Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 2013, 107, 133–139. [Google Scholar] [CrossRef]
- Jiříčková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Purabgola, A.; Kandasubramanian, B. Functionalised graphene as flexible electrodes for polymer photovoltaics. J. Alloy. Compd. 2020, 825, 153954. [Google Scholar] [CrossRef]
- Jafari, E.A.; Moradi, M.; Hajati, S.; Kiani, M.A.; Espinos, J.P. Electrophoretic deposition of mixed copper oxide/GO as cathode and N-doped GO as anode for electrochemical energy storage. Electrochim. Acta 2018, 268, 392–402. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
- Zeng, S.; Pan, Q.; Huang, Z.; Gu, C.; Wang, T.; Xu, J.; Yan, Z.; Zhao, F.; Li, P.; Tu, Y.; et al. Ultrafast response of self-powered humidity sensor of flexible graphene oxide film. Mater. Des. 2023, 226, 111683. [Google Scholar] [CrossRef]
- Zheng, J.; Li, J.; Zhang, L.; Chen, X.; Yu, Y.; Huang, H. Post-graphene 2D materials-based antimicrobial agents: Focus on fabrication strategies and biosafety assessments. J. Mater. Sci. 2020, 55, 7226–7246. [Google Scholar] [CrossRef]
- Govindaraju, S.; Samal, M.; Yun, K. Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation. Mater. Sci. Eng. C 2016, 69, 366–372. [Google Scholar] [CrossRef]
- Gong, J.Q.; He, C.; Zhang, J.L.; Wang, L.Z. GO-P25@SA gel beads with excellent separation performance for photocatalytic degradation of rhodamine B. Res. Chem. Intermed. 2021, 47, 2331–2338. [Google Scholar] [CrossRef]
- Zhou, C.; He, X.H.; Hou, Y.H.; Zhang, L.; Shi, F.W.; Hu, J.L. Alginate/r-GO/SiO2 aerogels with double catalytic activity sites and high mechanical performance. Mater. Lett. 2021, 288, 129394. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Shahryari, E.; Sefidi, P.Y. Polyaniline grafted chitosan/GO-CNT/Fe3O4 nanocomposite as a superior electrode material for supercapacitor application. J. Appl. Polymer Sci. 2021, 138, e50976. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, W.J.; Wang, K.; Xu, J.G. GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings. J. Hazard. Mater. 2021, 417, 126048. [Google Scholar] [CrossRef]
- Huo, X.; Yi, H.; Fu, Y.; An, Z.; Qin, L.; Liu, X.; Li, B.; Liu, S.; Li, L.; Zhang, M.; et al. Porous graphitic carbon nitride nanomaterials for water treatment. Environ. Sci. Nano 2021, 8, 1835–1862. [Google Scholar] [CrossRef]
- Shi, H.; Long, S.; Hou, J.; Ye, L.; Sun, Y.; Ni, W.; Song, C.; Li, K.; Gurzadyan, G.G.; Guo, X. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visible-light-driven CO2 reduction activity. Chem. Eur. J. 2019, 25, 5028–5035. [Google Scholar] [CrossRef]
- Akple, M.S.; Ishigaki, T.; Madhusudan, P. Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity. Environ. Sci. Pollut. Res. 2020, 27, 22604–22618. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renew. Sustain. Energy Rev. 2022, 168, 112776. [Google Scholar] [CrossRef]
- Li, L.; Yu, H.; Xu, J.; Zhao, S.; Liu, Z.; Li, Y. Rare earth element, Sm, modified graphite phase carbon nitride heterostructure for photocatalytic hydrogen production. New J. Chem. 2019, 43, 1716–1724. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Niu, W.; Yang, Y. Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 2018, 3, 2796–2815. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, T.; Zhao, R.; Kong, Y.; Su, L.; Ma, D.; Xiao, X.; Wang, Y. Fluorescence ‘turn-on’ probe for Al3+ detection in water based on ZnS/ZnO quantum dots with excellent selectivity and stability. Nanotechnology 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Zhan, M.; Jia, H.; Fan, J.; Yu, H.; Amador, E.; Chen, W. Two D-pi-A schiff-base-functionalized silica gel adsorbents for preconcentration of copper ions in foods and water for detection. Anal. Chem. 2019, 91, 6103–6110. [Google Scholar] [CrossRef] [PubMed]
- Karakus, E. A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper(II)ions in aqueous media and living cells. J. Mol. Struct. 2021, 1224. [Google Scholar] [CrossRef]
- Falina, S.; Syamsul, M.; Rhaffor, N.A.; Hamid, S.S.; Zain, K.A.M.; Manaf, A.A.; Kawarada, H. Ten years progress of electrical detection of heavy metal ions(HMIs)using various field-effect transistor (FET) nanosensors: A review. Biosensors 2021, 11, 478. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’detection of heavymetal ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef]
- Chen, S.-H.; Li, Y.-X.; Li, P.-H.; Xiao, X.-Y.; Jiang, M.; Li, S.-S.; Zhou, W.-Y.; Yang, M.; Huang, X.-J.; Liu, W.-Q. Electrochemical spectral methods for trace detection of heavy metals: A review. TrAC Trends Anal. Chem. 2018, 106, 139–150. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Lin, Z.; Qiu, B.; Chen, G. A highly sensitive and selective “signal-on”electrochemiluminescent biosensor for mercury. Chem. Commun. 2010, 46, 3149–3151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, X.; Wang, H.; Wang, S.; Wang, H.; Sun, B.; Su, Y.; He, Y. A poly adenine-mediated assembly strategy for designing surface-enhanced resonance raman scattering substrates in controllable manners. Anal. Chem. 2015, 87, 6631–6638. [Google Scholar] [CrossRef]
- Roy, A.; NIandi, M.; Roy, P. Dual chemosensors for metal ions: A comprehensive review. TrAC Trends Anal. Chem. 2021, 138, 116204. [Google Scholar] [CrossRef]
- Peng, J.; Li, J.; Xu, W.; Wang, L.; Su, D.; Teoh, C.L.; Chang, Y.-T. Silica nanoparticle-enhanced fluorescent sensor array for heavy metal ions detection in colloid solution. Anal. Chem. 2018, 90, 1628–1634. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Liu, N.; Song, W.; Sun, Q.; Xie, Y. Fabrication of hydrophilic luminescent zinc oxide quantum dots for selective detection of copper ions and efficient inhibition of harmful fungi. Arab. J. Chem. 2022, 15, 104266. [Google Scholar] [CrossRef]
- Ng, S.M.; Chin, S.F. Interface study on zinc oxide quantum dots using fluorometric and regression analysis in view of optical sensing. Anal. Lett. 2013, 46, 1278–1288. [Google Scholar] [CrossRef]
- Moussa, H.; Merlin, C.; Dezanet, C.; Balan, L.; Medjahdi, G.; Ben-Attia, M.; Schneider, R. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J. Hazard. Mater. 2016, 304, 532–542. [Google Scholar] [CrossRef]
- Zou, T.; Xing, X.; Yang, Y.; Wang, Z.; Wang, Z.; Zhao, R.; Zhang, X.; Wang, Y. Water-soluble ZnO quantum dots modified by (3-aminopropyl) triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water. J. Alloys Compd. 2020, 825, 153904. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Mitra, T.; Sahoo, D. Metal oxide QD based ultrasensitive microsphere fluorescent sensor for copper, chromium and iron ions in water. RSC Adv. 2020, 10, 9512–9524. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.M.; Wong, D.S.N.; Phung, J.H.C.; Chua, H.S. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta 2013, 116, 514–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wang, L.; Jiang, R.; Tang, Y.; He, Y.; Sun, C.; Lv, Y.; Liu, S. Fluorescence Properties of ZnOQDs-GO-g-C3N4 Nanocomposites. Micromachines 2023, 14, 711. https://doi.org/10.3390/mi14040711
Liu T, Wang L, Jiang R, Tang Y, He Y, Sun C, Lv Y, Liu S. Fluorescence Properties of ZnOQDs-GO-g-C3N4 Nanocomposites. Micromachines. 2023; 14(4):711. https://doi.org/10.3390/mi14040711
Chicago/Turabian StyleLiu, Tianze, Lei Wang, Ruxue Jiang, Yashi Tang, Yuxin He, Changze Sun, Yuguang Lv, and Shuang Liu. 2023. "Fluorescence Properties of ZnOQDs-GO-g-C3N4 Nanocomposites" Micromachines 14, no. 4: 711. https://doi.org/10.3390/mi14040711
APA StyleLiu, T., Wang, L., Jiang, R., Tang, Y., He, Y., Sun, C., Lv, Y., & Liu, S. (2023). Fluorescence Properties of ZnOQDs-GO-g-C3N4 Nanocomposites. Micromachines, 14(4), 711. https://doi.org/10.3390/mi14040711