Review of Microbottle Resonators for Sensing Applications
Abstract
:1. Introduction
2. MBRs Optical Properties
2.1. Resonant Wavelength
2.2. Free Spectral Range (FSR)
2.3. Mode Volume
2.4. Quality Factor
2.5. Finess
3. MBR Light Coupling
3.1. Phase Matching
3.2. Free-Space Coupling
3.3. Evanescent Waves Coupling
3.4. Tapered Fiber Coupling
3.5. Waveguide Coupling
3.6. Prism Coupling
3.7. Fiber-Tip Coupling
4. MBR Fabrication
4.1. Two-Step Method (Heat-and-Pull)
4.2. Soften-and-Compress
4.3. Polymer Self-Assembly
5. MBR Sensor
5.1. MBR Sensing Parameters
5.1.1. Sensitivity
5.1.2. Time Resolution
5.1.3. Specificity
5.2. MBR Temperature Sensor
5.3. MBR Humidity Sensors
5.4. MBR for Chemical Sensing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohd Nasir, M.N.; Senthil Murugan, G.; Zervas, M.N. Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators. J. Opt. Soc. Am. 2016, 33, 1963–1970. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Chen, X.; Xie, S.; Wu, X. Controllable and selective single-mode lasing in polymer microbottle resonator. Opt. Express 2018, 26, 20183–20191. [Google Scholar] [CrossRef]
- Yin, Y.; Niu, Y.; Dai, L.; Ding, M. Cascaded microbottle resonator and its application in add–drop filter. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Windeler, R. Optical microbubble resonator. Opt. Lett. 2010, 35, 898–900. [Google Scholar] [CrossRef]
- Sumetsky, M. Whispering-gallery-bottle microcavities: The three-dimensional etalon. Opt. Lett. 2004, 29, 8–10. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, L.; Xiao, B.; Zhang, X.; Fan, X. All-Optical Tunable Microlaser Based on an Ultrahigh-Q Erbium-Doped Hybrid Microbottle Cavity. ACS Photonics 2018, 5, 3794–3800. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, B.; Jiang, B.; Shi, L.; Zhang, X. Tunable Brillouin and Raman microlasers using hybrid microbottle resonators. Nanophotonics 2019, 8, 931–940. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z.; Ping Shum, P.; Xu, Z.; Keiser, G.; Humbert, G.; Zhang, H.; Zeng, S.; Quyen Dinh, X. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron. Adv. 2018, 1, 18001501–18001510. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, Y.; Sun, H. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162. [Google Scholar] [CrossRef]
- Bozzola, A.; Perotto, S.; De Angelis, F. Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: A critical review. Analyst 2017, 142, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Pan, J.; Zhao, Y.; Wang, J.; Xiao, S. Whispering gallery mode optical microresonators: Structures and sensing applications. Phys. Status Solidi 2020, 217, 1900825. [Google Scholar] [CrossRef]
- Matsko, A.B.; Ilchenko, V.S. Optical resonators with whispering-gallery modes-part I: Basics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3–14. [Google Scholar] [CrossRef]
- Matsko, A.; Savchenkov, A.; Strekalov, D.; Ilchenko, V.; Maleki, L. Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics. IPN Prog. Rep. 2005, 42, 1–51. [Google Scholar]
- Chiasera, A.; Dumeige, Y.; Feron, P.; Ferrari, M.; Jestin, Y.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G.C. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 2010, 4, 457–482. [Google Scholar] [CrossRef]
- Righini, G.; Dumeige, Y.; Féron, P.; Ferrari, M.; Conti, G.N.; Ristic, D.; Soria, S. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. 2011, 34, 435–488. [Google Scholar]
- Cai, M.; Painter, O.; Vahala, K.J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 2000, 85, 74. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Pan, J.; Hu, S. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Opt. Lasers Eng. 2020, 127, 105968. [Google Scholar] [CrossRef]
- Zhang, S.-X.; Wang, L.; Li, Z.-Y.; Li, Y.; Gong, Q.; Xiao, Y.-F. Free-space coupling efficiency in a high-Q deformed optical microcavity. Opt. Lett. 2016, 41, 4437–4440. [Google Scholar] [CrossRef]
- Knight, J.C.; Cheung, G.; Jacques, F.; Birks, T.A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 1997, 22, 1129–1131. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Wu, X.; Liu, L.; Xu, L. Mode-selective lasing in high-Q polymer micro bottle resonators. Opt. Express 2015, 23, 22740–22745. [Google Scholar] [CrossRef]
- Farnesi, D.; Chiavaioli, F.; Righini, G.C.; Soria, S.; Trono, C.; Jorge, P.; Nunzi Conti, G. Long period grating-based fiber coupler to whispering gallery mode resonators. Opt. Lett. 2014, 39, 6525–6528. [Google Scholar] [CrossRef]
- Yang, C.; Liu, B.; Zhang, H.; Lin, W.; Li, Y.; Liu, H.; Song, B. Excitation of whispering gallery modes in silica capillary using SMF-MMF joint with lateral offset. IEEE Photonics Technol. Lett. 2017, 29, 1027–1030. [Google Scholar] [CrossRef]
- Ulrich, R. Optimum excitation of optical surface waves. JOSA 1971, 61, 1467–1477. [Google Scholar] [CrossRef]
- Treussart, F.; Ilchenko, V.S.; Roch, J.F.; Hare, J.; Lefevre-Seguin, V.; Raimond, J.M.; Haroche, S. Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium. Eur. Phys. J. D 1998, 1, 235–238. [Google Scholar] [CrossRef]
- Gorodetsky, M.L.; Ilchenko, V.S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 1999, 16, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Rowland, D.R.; Love, J.D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc. J. Optoelectron. 1993, 140, 177–188. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Yao, X.S.; Maleki, L. Pigtailing the high-Q microsphere cavity:? a simple fiber coupler for optical whispering-gallery modes. Opt. Lett. 1999, 24, 723–725. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Zhou, T.; Han, B.; Zhang, A.; Zhao, Y. Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale 2018, 10, 13832–13856. [Google Scholar] [CrossRef]
- Rottler, A.; Harland, M.; Broll, M.; Klingbeil, M.; Ehlermann, J.; Mendach, S. High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter. Phys. Rev. Lett. 2013, 111, 253901. [Google Scholar] [CrossRef]
- Ward, J.M.; O’Shea, D.G.; Shortt, B.J.; Morrissey, M.J.; Deasy, K.; Chormaic, S.G.N. Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum. 2006, 77, 083105. [Google Scholar] [CrossRef] [Green Version]
- Bianucci, P.; Wang, X.; Veinot, J.; Meldrum, A. Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics. Opt. Express 2010, 18, 8466–8481. [Google Scholar] [CrossRef]
- Zervas, M.N.; Murugan, G.S.; Wilkinson, J.S. Demonstration of novel high-Q fibre WGM “Bottle” microresonators. In Proceedings of the 2008 10th Anniversary International Conference on Transparent Optical Networks, Athens, Greece, 22–26 June 2008; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Murugan, G.S.; Wilkinson, J.S.; Zervas, M.N. Selective excitation of whispering gallery modes in a novel bottle microresonator. Opt. Express 2009, 17, 11916–11925. [Google Scholar] [CrossRef]
- Vukovic, N.A.; Healy, N.; Horak, P.; Murugan, G.S.; Zervas, M.N.; Peacock, A.C. Whispering gallery modes in semiconductor optical fibres and optical bottle microresonators. In Proceedings of the 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, Serbia, 16–19 October 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Gu, G.; Guo, C.; Cai, Z.; Xu, H.; Chen, L.; Fu, H.; Che, K.; Hong, M.; Sun, S.; Li, F. Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring. Appl. Opt. 2014, 53, 7819–7824. [Google Scholar] [CrossRef]
- Wang, H.; Liao, M.; Xiao, H.; Zhang, Z.; Yang, J.; Yang, J.; Tian, Y. All-Optical Tunable Whispering Gallery Modes in a Polymer Bottle Micro-Resonator. IEEE Photon. Technol. Lett. 2020, 33, 97–100. [Google Scholar] [CrossRef]
- Zhu, N.; Shi, B.; Guo, Y.; Han, B.; Zhang, Y.-N. Polydimethylsiloxane self-assembled whispering gallery mode microbottle resonator for ethanol sensing. Opt. Mater. 2020, 107, 110024. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Veluthandath, A.V.; Murugan, G.S.; Bisht, P.B. Temperature dependence of whispering gallery modes of quantum dot-doped microbottle resonators. J. Lumin. 2020, 221, 117050. [Google Scholar] [CrossRef]
- Grimaldi, I.A.; Berneschi, S.; Testa, G.; Baldini, F.; Conti, G.N.; Bernini, R. Polymer based planar coupling of self-assembled bottle microresonators. Appl. Phys. Lett. 2014, 105, 231114. [Google Scholar] [CrossRef]
- Persichetti, G.; Grimaldi, I.A.; Testa, G.; Bernini, R. Self-assembling and packaging of microbottle resonators for all-polymer lab-on-chip platform. Sens. Actuators A 2018, 280, 271–276. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, X.; Wang, Z.; Yang, L.; Sun, W.; Yang, Y.; Dong, Y.; Huang, Y.; Wang, T. Magnetic Fluid Infiltrated Microbottle Resonator Sensor With Axial Confined Mode. IEEE Photonics J. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhao, S.; Yu, Y.; Sun, H.; Yang, Y.; Dong, Y.; Huang, Y.; Wang, T. High-Sensitivity Flow Rate Sensor Enabled by Higher Order Modes of Packaged Microbottle Resonator. IEEE Photonics Technol. Lett. 2021, 33, 599–602. [Google Scholar] [CrossRef]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168–240. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Qavi, A.J.; Huang, S.H.; Yang, L. Whispering gallery microsensors: A review. arXiv 2018, arXiv:1805.00062. [Google Scholar]
- Nemova, G.; Kashyap, R. Silica bottle resonator sensor for refractive index and temperature measurements. Sensors 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Batumalay, M.; Md Johari, M.A.; Imran Mustafa Abdul Khudus, M.; Hafiz Bin Jali, M.; Al Noman, A.; Wadi Harun, S. Microbottle resonator for temperature sensing. J. Phys. Conf. Ser. 2019, 1371, 012006. [Google Scholar] [CrossRef]
- Herter, J.; Wunderlich, V.; Janeczka, C.; Zamora, V. Experimental Demonstration of Temperature Sensing with Packaged Glass Bottle Microresonators. Sensors 2018, 18, 4321. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Nie, T.; Ding, M. Temperature Sensor Based on Microbottle Resonator Immersed in Isopropanol. IEEE Photonics J. 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Li, H.-C.; Wang, M.-Y.; Liu, B.; Liu, J.; Wang, Q.; He, X.-D.; Ping Chan, H.; Wang, D.; Yuan, J.; Wu, Q. Temperature-independent relative humidity sensing properties of polymer micro-bottle resonators coated with graphene oxide. Measurement 2022, 196, 111199. [Google Scholar] [CrossRef]
- Md Johari, M.A.; Abdul Khudus, M.I.M.; Bin Jali, M.H.; Al Noman, A.; Wadi Harun, S. Whispering gallery modes on optical micro-bottle resonator for humidity sensor application. Optik 2019, 185, 558–565. [Google Scholar] [CrossRef]
- Md Johari, M.A.; Abdul Khudus, M.I.M.; Bin Jali, M.H.; Al Noman, A.; Wadi Harun, S. Effect of Size on Single and Double Optical Microbottle Resonator Humidity Sensors. Sens. Actuators A 2018, 284, 286–291. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Rahim, H.R.A.; Yasin, M.; Harun, S.W. Effect of agarose concentration on coated micro-bottle resonators for humidity detection. Microw. Opt. Technol. Lett. 2021, 63, 1826–1831. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Johari, M.A.M.; Dimyati, K.; Harun, S.W. Agarose coated micro-bottle sensor for relative humidity detection. Optoelectron. Lett. 2021, 17, 328–333. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Rahim, H.R.A.; Yasin, M.; Harun, S.W. HEC/PVDF coated microbottle resonators for relative humidity detection. Optik 2021, 232, 166534. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Wang, M.; Zhu, N.; Han, B.; Liu, Y. Optical fiber hydrogen sensor based on self-assembled PDMS/Pd-WO3 microbottle resonator. Sens. Actuators B Chem. 2023, 375, 132866. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Al Noman, A.; Abdul Khudus, M.I.M.; Jali, M.H.; Yusof, H.H.M.; Harun, S.W.; Yasin, M. Microbottle resonator for formaldehyde liquid sensing. Optik 2018, 173, 180–184. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Abdul Khudus, M.I.M.; Jali, M.H.B.; Maslinda, M.S.; Ali, U.U.M.; Harun, S.W.; Zaidan, A.H.; Apsari, R.; Yasin, M. Effect of tapering diameters with microbottle resonator for formaldehyde (CH2O) liquid sensing. Sens. Bio-Sens. Res. 2019, 25, 100292. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Rosol, A.H.; Baharuddin, N.A.; Abdul Khudus, M.I.M.; Jali, M.H.; Maslinda, M.S.; Jaapar, S.S.; Harun, S.W. Microbottle-Resonator Ethanol Liquid Sensor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 854, 012075. [Google Scholar] [CrossRef]
- Ashadi Md Johari, M.; Hafiz Bin Jali, M.; Helmi Bin Mohd Yusof, H.; Rafis Bin Abdul Rahim, H.; Binti Ahmad, A.; Imran Mustafa Abdul Khudus, M.; Wadi Harun, S. Polyvinyl alcohol coating microbottle resonator on whispering gallery modes for ethanol liquid sensor. Opt. Laser Technol. 2021, 143, 107379. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Mokhtar, N.; Zain, H.A.; Johari, M.A.M.; Apsari, R.; Harun, S.W. Micro-bottle resonator for sodium hypochlorite sensor. Optik 2021, 242, 167328. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Sharif, M.; Jali, M.B.; Yusof, H.M.; Rahim, H.A.; Ahmad, A.; Khudus, M.A.; Harun, S.W. Effect of polyvinyl alcohol coating microbottle resonator for sodium hypochlorite concentration sensing. Optik 2021, 242. [Google Scholar] [CrossRef]
Coupling Methods | Coupling Efficiency | Advantages | Disadvantages | Ref |
---|---|---|---|---|
Free space | 20% and up to 30% | Versatility | Low coupling efficiency; interference and difficult maintenance can be an issue | [18] |
Prism | 80% | Convenient handling | Larger size, challenging integration | [23,26] |
Fiber tip | 60% | Small size, easy integration | Challenging fabrication and packaging; fiber tip can be fragile | [11,17,27] |
Tapered fiber | >99% | The highest coupling efficiency; simple, well-established fabrication methods Easy integration; cost-effective | Tapered fiber can be fragile; packaging can be challenging | [16,19,28] |
Analyte | Structure | Sensitivity | Ref |
---|---|---|---|
Temperature | MBRs embedded in isopropanol | 61 pm/°C | [48] |
Temperature | 3D packaged MBR | 10.5 pm/K | [47] |
Temperature | Silica MBR | 0.0149 dB/C–1.3 pm/°C | [46] |
Temperature | Self-assembled PMMA MBRs doped with cadmium selenide quantum dots | 9.2 pm/°C | [38] |
Humidity | Agarose coated MBR | 0.107 dBm/% | [52] |
Humidity | self-assembled (Locatite3525)/graphene oxide | 0.161 nm/%RH | [49] |
Humidity | Silica MBRs | 0.0487 dB/% | [50] |
Humidity | HEC/PVDF coated MBRs | 0.111 dB/RH% | [54] |
Hydrogen | Self-assembled (SMF)/(Pd-WO3)/(PDMS) | −3.091 nm/% | [55] |
Formaldehyde | Silica MBRs | 4.397 dB/%. | [56] |
Ethanol | Silica MBRs | 0.1756 dB/%ppm | [58] |
Ethanol | PVA coated MBR | 0.2699 dB/%ppm–0.2 pm/%ppm | [59] |
Sodium hypochlorite | Silica MBR | of 0.002 nm/%ppm–3.7319 dB/%ppm | [60] |
Sodium hypochlorite | PVA coated MBR | 5.5176 dB/%ppm–2.4 pm/%ppm | [61] |
Magnetic field | Hollow core capillary | 8.45 pm/Gs | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan Zain, H.; Batumalay, M.; Haris, H.; Saad, I.; Muhammad, A.R.; Mustaffa, S.N.; Markom, A.M.; Abdul Rahim, H.R.; Tan, S.J.; Harun, S.W. Review of Microbottle Resonators for Sensing Applications. Micromachines 2023, 14, 734. https://doi.org/10.3390/mi14040734
Adnan Zain H, Batumalay M, Haris H, Saad I, Muhammad AR, Mustaffa SN, Markom AM, Abdul Rahim HR, Tan SJ, Harun SW. Review of Microbottle Resonators for Sensing Applications. Micromachines. 2023; 14(4):734. https://doi.org/10.3390/mi14040734
Chicago/Turabian StyleAdnan Zain, Huda, Malathy Batumalay, Hazlihan Haris, Ismail Saad, Ahmad Razif Muhammad, Siti Nasuha Mustaffa, Arni Munira Markom, Hazli Rafis Abdul Rahim, Sin Jin Tan, and Sulaiman Wadi Harun. 2023. "Review of Microbottle Resonators for Sensing Applications" Micromachines 14, no. 4: 734. https://doi.org/10.3390/mi14040734
APA StyleAdnan Zain, H., Batumalay, M., Haris, H., Saad, I., Muhammad, A. R., Mustaffa, S. N., Markom, A. M., Abdul Rahim, H. R., Tan, S. J., & Harun, S. W. (2023). Review of Microbottle Resonators for Sensing Applications. Micromachines, 14(4), 734. https://doi.org/10.3390/mi14040734