Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Preparation of Cyclodextrin Functionalized Graphene Oxide (CD1-GO)
2.3. Preparation of CD1-GO/GCE
2.4. Preparation of CD1-erGO/GCE
3. Results and Discussion
3.1. Morphological and Structural Characterization: SEM, ATR-FTIR, Raman, and XPS
3.2. Electrochemical Performance of CD1-erGO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, H.; Yu, H.; Zhang, B.Y.; Chen, K.; Yi, Q.; Xie, H.; Hu, X.; Tang, T.; Cheng, Y.; Tao, X.; et al. Approximately 1 nm-sized artificial tunnels in wrinkled graphene-graphene oxide composite membranes for efficient dye/dye separation and dye desalination. Chem. Eng. J. 2022, 445, 136753. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Yang, Q.; Cui, G.; Li, Z. The role of graphene in anti-corrosion coatings: A review. Constr. Build. Mater. 2021, 294, 123613. [Google Scholar] [CrossRef]
- Homem, N.C.; Miranda, C.S.; Teixeira, M.A.; Domingues, J.M.; Seibert, D.; Antunes, J.C.; Amorim, M.T.P.; Felgueiras, H.P. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J. Drug. Deliv. Sci. Technol. 2022, 78, 103992. [Google Scholar] [CrossRef]
- Skuse, C.; Tarpani, R.R.Z.; Gorgojo, P.; Gallego-Schmid, A.; Azapagic, A. Comparative life cycle assessment of seawater desalination technologies enhanced by graphene membranes. Desalination 2023, 551, 116418. [Google Scholar] [CrossRef]
- Al-Azmi, A.; Keshipour, S. New bidental sulfur-doped graphene quantum dots modified with gold as a catalyst for hydrogen generation. J. Colloid. Interface Sci. 2022, 612, 701–709. [Google Scholar] [CrossRef]
- Hu, H.; Wen, W.; Ou, J.Z. Construction of adsorbents with graphene and its derivatives for wastewater treatment: A review. Environ. Sci. Nano 2022, 9, 3226. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Rahdar, A. Graphene-Based Polymer Composites for Flexible Electronic Applications. Micromachines 2022, 13, 1123. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Woo, Y.S. Transparent Conductive Electrodes Based on Graphene-Related Materials. Micromachines 2019, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Keshipour, S.; Mohammad-Alizadeh, S.; Razeghi, M.H. Copper phthalocyanine@graphene oxide as a cocatalyst of TiO2 in hydrogen generation. J. Phys. Chem. Solids 2022, 161, 110434. [Google Scholar] [CrossRef]
- Keshipour, S.; Mohammad-Alizadeh, S. Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci. Rep. 2021, 11, 16148. [Google Scholar] [CrossRef]
- Keshipour, S.; Khezerloo, M. Nanocomposite of hydrophobic cellulose aerogel/graphene quantum dot/Pd: Synthesis, characterization, and catalytic application. RSC Adv. 2019, 9, 17129. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, H.; Keshipour, S.; Ahour, F. New water-soluble colorimetric pH and metal ione sensor based on graphene quantum dot modified with alizarine red S. Sci. Rep. 2020, 10, 14185. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Ahour, F.; Keshipour, S. Sensitive and selective determination of trace amounts of mercury ions using a dimercaprol functionalized graphene quantum dot modified glassy carbon electrode. Nanoscale 2021, 13, 11403. [Google Scholar] [CrossRef] [PubMed]
- Acocella, M.R.; D’Urso, L.; Maggio, M.; Avolio, R.; Errico, M.E.; Guerra, G. Green and Facile Esterification Procedure Leading to Crystalline-Functionalized Graphite Oxide. Langmuir 2017, 33, 6819–6825. [Google Scholar] [CrossRef]
- Haruna, K.; Saleh, T.A.; Obot, I.; Umoren, S.A. Cyclodextrin-based functionalized graphene oxide as an effective corrosion inhibitor for carbon steel in acidic environment. Prog. Org. Coat. 2019, 128, 157–167. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Su, Z.; Wu, J.; Pan, Z.; Fu, Z. Preparation of cyclodextrin-modified graphene oxide and its adsorption properties for Pb (II). IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 052061. [Google Scholar] [CrossRef]
- Einafshar, E.; Khodadadipoor, Z.; Nejabat, M.; Ramezani, M. Synthesis, Characterization and Application of α, β, and γ Cyclodextrin-Conjugated Graphene Oxide for Removing Cadmium Ions from Aqueous Media. J. Polym. Environ. 2021, 29, 3161–3173. [Google Scholar] [CrossRef]
- Tian, H.; Zeng, H.; Zha, F.; Tian, H.; Chang, Y. Synthesis of Graphene Oxide–Supported β-Cyclodextrin Adsorbent for Removal of p-Nitrophenol. Water Air Soil. Pollut. 2020, 231, 495. [Google Scholar] [CrossRef]
- Hou, X.; Lu, X.; Niu, P.; Tang, S.; Wang, L.; Guo, Y. β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids. J. Sep. Sci. 2018, 41, 2207–2213. [Google Scholar] [CrossRef]
- Urcuk, A.; Karadurmus, L.; Bakirhan, N.K.; Ozkan, S.A. Enhancement of graphene oxide through β-cyclodextrin composite to sensitive analysis of an antidepressant: Sulpiride. Open. Chem. 2021, 19, 228–236. [Google Scholar] [CrossRef]
- Mirzaei, B.; Zarrabi, A.; Noorbakhsh, A.; Amini, A.; Makvandi, P. A reduced graphene oxide-b-cyclodextrin nanocomposite-based electrode for electrochemical detection of curcumin. RSC Adv. 2021, 11, 7862–7872. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lai, G.; Yu, A. Preparation of β-cyclodextrin functionalized reduced graphene oxide: Application for electrochemical determination of paracetamol. RSC Adv. 2015, 5, 76973–76978. [Google Scholar] [CrossRef]
- Singh, M.; Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 2018, 829, 230–240. [Google Scholar] [CrossRef]
- Oliveira, A.E.F.; Bettio, G.B.; Pereira, A.C. An Electrochemical Sensor Based on Electropolymerization of ß-Cyclodextrin and Reduced Graphene Oxide on a Glassy Carbon Electrode for Determination of Neonicotinoids. Electroanalysis 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Qin, Q.; Bai, X.; Hua, Z. Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 2016, 782, 50–58. [Google Scholar] [CrossRef]
- Ghanbari, M.H.; Shahdost-Fard, F.; Khoshroo, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Wysokowski, M.; Rębiś, T.; Żółtowska-Aksamitowska, S.; Jesionowski, T.; Rahimi, P.; et al. A nanocomposite consisting of reduced graphene oxide and electropolymerized β-cyclodextrin for voltammetric sensing of levofloxacin. Microchim. Acta 2019, 186, 438. [Google Scholar] [CrossRef]
- Mansori, G.; Gholivand, M.-B.; Es’Haghi, Z. Es’haghi. β-cyclodextrin coated graphene oxide nanoadsorbents on the hollow fiber-solid phase microextraction and electrochemical monitoring of acetaminophen. Desalin. Water Treat. 2020, 203, 211–220. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G. β-Cyclodextrin functionalized graphene oxide: An efficient and recyclable adsorbent for the removal of dye pollutants. Front. Chem. Sci. Eng. 2015, 9, 77–83. [Google Scholar] [CrossRef]
- Rathour, R.K.S.; Bhattacharya, J.; Mukherjee, A. β-Cyclodextrin conjugated graphene oxide: A regenerative adsorbent for cadmium and methylene blue. J. Mol. Liq. 2019, 282, 606–616. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Liu, X.; Wu, J.; Zhu, X.; Bai, Z.; Yu, Z. Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloid. Surf. B-Biointerfaces 2021, 200, 111605. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.T.; Showkat, A.; Kang, I.; Gal, Y.-S.; Lim, K.T. β-Cyclodextrin Multi-Conjugated Magnetic Graphene Oxide as a Nano-Adsorbent for Methylene Blue Removal. J. Nanosci. Nanotechnol. 2016, 16, 1521–1525. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Peng, J.; Wang, S.; Xie, B.; Lei, L.; Zhao, D.; Nie, H. Fabrication of graphene oxide-b-cyclodextrin nanoparticle releasing doxorubicin and topotecan for combination chemotherapy. Mater. Technol. 2015, 30, B242–B249. [Google Scholar] [CrossRef]
- Huang, Q.; Li, M.; Wang, L.; Yuan, H.; Wang, M.; Wu, Y.; Li, T. Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv. 2018, 8, 37623–37630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Ma, X.; Zhang, H.; Lu, W.; Ma, H.; Hou, S. Simultaneous Determination of Nitrophenol Isomers Based on βCyclodextrin Functionalized Reduced Graphene Oxide. Electroanalysis 2012, 24, 1178–1185. [Google Scholar] [CrossRef]
- García, M.; Bollo, S.; Rivas, G.A.; Ferreyra, N.F.; Yáñez, C. Bottom up approaches for amino β-CD adsorption on gold surfaces. A comparative study. Electrochim. Acta 2016, 203, 292–300. [Google Scholar] [CrossRef]
- Méndez-Torres, A.M.; Sandoval-Altamirano, C.; Sánchez-Arenillas, M.; Marco, J.F.; Yáñez, C. Amino β-cyclodextrins immobilized on gold surfaces: Effect of substituents on host-guest interactions. Electrochim. Acta 2018, 282, 860–869. [Google Scholar] [CrossRef]
- Lezcano, M.; Al-Soufi, W.; Novo, M.; Rodríguez-Núñez, E.; Tato, J.V. Complexation of Several Benzimidazole-Type Fungicides with α- and β-Cyclodextrins. J. Agric. Food Chem. 2002, 50, 108–112. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Li, F.; Wu, T.; Niu, L.; Chen, W. Facile electrochemical codeposition of “clean” graphene–Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem. Commun. 2012, 19, 21–24. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Rahman, S.; Deka, D.; Purkait, M.K.; Chowdhury, D.; Majumdar, G. Synthesis and characterization of exfoliated beta-cyclodextrin functionalized graphene oxide for adsorptive removal of atenolol. Mater. Chem. Phys. 2022, 288, 126413. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Potter, C.F.; Russell, N.R.; McNamara, M. Spectroscopic Characterisation of Metallo-Cyclodextrins for Potential Chiral Separation of Amino Acids and L/D-DOPA. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 395–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Q.; Xia, Z.; Gui, G.; Zhang, P.; Meng, L.; Pan, L. Amino β-cyclodextrin-functionalized GS/MWCNTs for simultaneous electrochemical determination of p-aminophenol and acetaminophen. Int. J. Electrochem. Sci. 2022, 17, 221172. [Google Scholar] [CrossRef]
- Savic-Gajic, I.; Savic, I.M.; Nikolic, V.D.; Nikolic, L.B.; Popsavin, M.M.; Kapor, A.J. Study of the solubility, photostability and structure of inclusion complexes of carvedilol with b-cyclodextrin and (2-hydroxypropyl)-b-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 7–17. [Google Scholar] [CrossRef]
- Kim, K.; Coh, S.; Tan, L.Z.; Regan, W.; Yuk, J.M.; Chatterjee, E.; Crommie, M.F.; Cohen, M.L.; Louie, S.G.; Zettl, A. Raman spectroscopy study of rotated double layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103. [Google Scholar] [CrossRef] [Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.S.; Chua, C.K.; Pumera, M. Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst 2014, 139, 1072–1080. [Google Scholar] [CrossRef]
- Urzúa, J.; Carbajo, J.; Yáñez, C.; Marco, J.F.; Squella, J.A. Electrochemistry and XPS of 2,7-dinitro-9-fluorenone immobilized on multi-walled carbon nanotubes. J. Solid. State Electrochem. 2016, 20, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.; Marco, J.; Yañez, C. Covalent Immobilization of Amino-β-Cyclodextrins on Glassy Carbon Electrode in Aqueous Media. J. Electrochem. Soc. 2019, 166, G75–G81. [Google Scholar] [CrossRef]
- Li, B.; Pan, G.; Avent, N.D.; Lowry, R.B.; Madgett, T.E.; Waines, P.L. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens. Bioelectron. 2015, 72, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, K.L.S.; Oliveira, S.M.; Curti, R.V.; Araújo, J.R.; Sassi, L.M.; Almeida, C.M.; Ferreira, E.H.M.; Archanjo, B.S.; Cabral, M.F.; Kuznetsov, A. Electrochemical Response of Glassy Carbon Electrodes Modified using Graphene Sheets of Different Sizes. Int. J. Electrochem. Sci. 2018, 13, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252. [Google Scholar] [CrossRef] [PubMed]
- Ilager, D.; Malode, S.J.; Shetti, N.P. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. Chemosphere 2022, 303, 134919. [Google Scholar] [CrossRef]
Surface | EA/cm2 |
---|---|
GCE | 0.068 |
GO/GCE | 0.027 |
CD1-GO/GCE | 0.022 |
erGO/GCE | 0.093 |
CD1-erGO/GCE | 0.088 |
Electrode | Sensitivity (μA μM−1) | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|---|
β-cyclodextrin functionalized reduced graphene oxide | 0.0278 | 10–100 | 2.3 | 23 |
Reduced graphene oxide-β-cyclodextrin-platinum nanocomposite | 0.011 | 40–170 | 0.12 | 24 |
Electropolymerization of β -cyclodextrin and Reduced Graphene Oxide | 0.149 | 5–165 | 8.92 | 25 |
Electropolymerized β-cyclodextrin on rGO/Screen printed electrode | 0.046 | 200–2000 | 67 | 26 |
Cyclodextrin-RGO/GCE | 0.38 | 7.2–72.8 | 0.36 | 35 |
CD1-erGO/GCE | 1.01 | 25–125 | 0.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos, E.; Marco, J.F.; Yáñez, C. Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. Micromachines 2023, 14, 746. https://doi.org/10.3390/mi14040746
Villalobos E, Marco JF, Yáñez C. Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. Micromachines. 2023; 14(4):746. https://doi.org/10.3390/mi14040746
Chicago/Turabian StyleVillalobos, Elias, José F. Marco, and Claudia Yáñez. 2023. "Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins" Micromachines 14, no. 4: 746. https://doi.org/10.3390/mi14040746
APA StyleVillalobos, E., Marco, J. F., & Yáñez, C. (2023). Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. Micromachines, 14(4), 746. https://doi.org/10.3390/mi14040746