Multiphase Actuation of AC Electrothermal Micropump
Abstract
:1. Introduction
2. Materials and Methods
2.1. ACET Theory and Relevant Equations
2.2. COMSOL Simulation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.-N.; Fu, L.M. Micropumps and biomedical applications—A review. Microelectron. Eng. 2018, 195, 121–138. [Google Scholar] [CrossRef]
- Qi, H.; Wang, B.; Liang, H.; Wu, J.J.; Ni, T.; Huang, Z.; Lu, Y.; Zhang, J. A Nanofluidic Sensor for Real-Time Detection of Ultratrace Contaminant Particles in IC Fabrication. IEEE Sens. 2020, 21, 755–764. [Google Scholar] [CrossRef]
- Sung, J.; Chiu, S.; Chao, S.D.; Li, A.H.T. A Simulation Study of the Electrothermal Effect on Cyclic Voltammetric Detection Efficiency of Methamphetamine in a Microfluidic Sensor. Multiscale Sci. Eng. 2021, 3, 155–164. [Google Scholar] [CrossRef]
- Lin, H.; Hojaiji, H.; Lin, S.; Yeung, C.; Zhao, Y.; Wang, B.; Malige, M.; Wang, Y.; King, K.; Yu, W.; et al. A wearable electrofluidic actuation system. Lab Chip 2019, 19, 2966–2972. [Google Scholar] [CrossRef]
- Mi, S.; Li, B.; Yi, X.; Xu, Y.; Du, Z.; Yang, S.; Lif, W.; Sun, W. An AC electrothermal self-circulating system with a minimalist process to construct a biomimetic liver lobule model for drug testing. RSC Adv. 2018, 8, 36987–36998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ren, Y.; Jiang, H. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow. Electrophoresis 2017, 38, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Kaziz, S.; Saad, Y.; Bouzid, M.; Selmi, M.; Belmabrouk, H. Enhancement of COVID-19 detection time by means of electrothermal force. Microfluid. Nanofluid. 2021, 25, 86. [Google Scholar] [CrossRef]
- Wan, N.; Jiang, Y.; Huang, J.; Oueslati, R.; Eda, S.; Wu, J.; Lin, X. Rapid and Sensitive Detection of miRNA Based on AC Electrokinetic Capacitive Sensing for Point-of-Care Applications. Sensors 2021, 21, 3985. [Google Scholar] [CrossRef]
- Koklu, A.; Giuliani, J.; Monton, C.; Beskok, A. Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor. Anal. Chem. 2020, 92, 7762–7769. [Google Scholar] [CrossRef]
- Draz, M.S.; Uning, K.; Dupouy, D.; Gijs, M.A.M. Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays. Lab Chip 2023, 23, 1637–1648. [Google Scholar] [CrossRef]
- Dua, E.; Manoochehri, S. Enhanced ac electrothermal fluidic pumping in microgrooved channels. J. Appl. Phys. 2008, 104, 064902. [Google Scholar] [CrossRef] [Green Version]
- Khakpour, A.; Ramiar, A. Numerical investigation of the effect of electrode arrangement and geometry on electrothermal fluid flow pumping and mixing in microchannel. Chem. Eng. Process. 2020, 150, 107864. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel. Electrophoresis 2019, 39, 3156–3170. [Google Scholar] [CrossRef]
- Temiz, Y.; Ferretti, A.; Leblebici, Y.; Guiducci, C. A comparative study on fabrication techniques for on-chip microelectrodes. Lab Chip 2012, 12, 4920–4928. [Google Scholar] [CrossRef] [PubMed]
- Vafaie, R.H.; Moradpour, A. Theoretical and Experimental Study of High Conductive Fluid and Electric Field Interaction inside a Microchannel. In Proceedings of the Iranian Conference on Electrical Engineering, Tehran, Iran, 2–4 May 2017. [Google Scholar]
- Zhang, R.; Dalton, C.; Jullien, G.A. Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluid. Nanofluid. 2011, 10, 521–529. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; Research Studies Press Ltd.: Baldock, UK, 2003. [Google Scholar]
- Perch-Nielson, I.R.; Green, N.G.; Wolff, A. Numerical simulation of travelling wave induced electrothermal fluid flow. J. Phys. D 2004, 37, 2323–2330. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Zhou, Z.; Wu, O.; Xue, R.; Yao, B. Multiple frequency electrothermal induced flow: Theory and microfluidic applications. J. Phys. D 2020, 53, 175304. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Shao, J.; Jiang, H.; Ding, Y. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. J. Phys. D 2014, 47, 075501. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Chen, X.; Yao, B.; Hui, M.; Bai, L. Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Phys. Fluids 2017, 29, 112002. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Yao, B.; Liu, N.; Wu, Q. A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Phys. Fluids 2017, 29, 112001. [Google Scholar] [CrossRef]
- Salari, A.; Navi, M.; Lijnse, T.; Dalton, C. AC Electrothermal Effect in Microfluidics: A Review. Micromachines 2019, 10, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, N.G.; Ramos, A.; Gonzalez, A.; Castellanos, A.; Morgan, H. Electrothermally induced fluid flow on microelectrodes. J. Electrostat. 2001, 53, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zorrilla, R.; Rossi, R.; Wüchner, R. A time averaged steady state method for the Navier–Stokes equations. Int. J. Numer. Methods Fluids 2021, 93, 2023–2064. [Google Scholar] [CrossRef]
- Lijnse, T.; Cenaiko, S.; Dalton, C. Numerical simulation of a tuneable reversible flow design for practical ACET devices. SN Appl. Sci. 2020, 2, 305. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Yang, K.; Wu, J. Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid. Nanofluid. 2014, 16, 167–178. [Google Scholar] [CrossRef]
- Lijnse, T.; Cenaiko, S.; Moscoso, G.; Dalton, C. Reassessing Electrothermal Simulation Techniques to Develop Realistic Models. In Proceedings of the COMSOL Conference, Virtual, 7–8 October 2020. [Google Scholar]
- Salari, A.; Navi, M.; Dalton, C. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications. BMF 2015, 9, 014113. [Google Scholar] [CrossRef] [Green Version]
- Lian, M.; Islam, N.; Wu, J. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. IET Nanobiotechnol. 2007, 1, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Cenaiko, S.; Lijnse, T.; Dalton, C. Insulative Coating Design Considerations for an AC Electrothermal Micropump. In Proceedings of the Alberta Biomedical Engineering Conference, Banff, AB, Canada, 22–23 October 2021. [Google Scholar]
- Gulli, F.; Santini, S.A.; Napodano, C.; Bottoni, P.; Pocino, K.; Rapaccini, G.L.; Basile, U. Cryoglobulin Test and Cryoglobulinemia Hepatitis C-Virus Related. MJHID 2017, 9, 2017007. [Google Scholar]
Property | Symbol | Value |
---|---|---|
Relative permittivity | 80.2 | |
Electrical conductivity | 0.224 S/m | |
Thermal conductivity | 0.598 W/(m K) | |
Density | 999 kg/m3 | |
Heat capacity at constant pressure | 4181 J/(kg K) | |
Ratio of specific heats | 1 | |
Dynamic viscosity | 1.05 × 10−3 (N s)/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenaiko, S.; Lijnse, T.; Dalton, C. Multiphase Actuation of AC Electrothermal Micropump. Micromachines 2023, 14, 758. https://doi.org/10.3390/mi14040758
Cenaiko S, Lijnse T, Dalton C. Multiphase Actuation of AC Electrothermal Micropump. Micromachines. 2023; 14(4):758. https://doi.org/10.3390/mi14040758
Chicago/Turabian StyleCenaiko, Stirling, Thomas Lijnse, and Colin Dalton. 2023. "Multiphase Actuation of AC Electrothermal Micropump" Micromachines 14, no. 4: 758. https://doi.org/10.3390/mi14040758
APA StyleCenaiko, S., Lijnse, T., & Dalton, C. (2023). Multiphase Actuation of AC Electrothermal Micropump. Micromachines, 14(4), 758. https://doi.org/10.3390/mi14040758