Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure
Abstract
:1. Introduction
2. Result and Discussion
2.1. Design Rationale
2.2. Morphology
2.3. Effect of Design Parameters on Piezoelectric Coefficient
2.4. Thermal Stability of COC Piezoelectret
2.5. Study of the Behavior during the Charging Process and Actuation Behavior of the Material
2.6. Sensing Application of COC Piezoelectret
3. Conclusions
4. Experimental Section
4.1. Fabrication of COC Piezoelectret
4.1.1. Materials
4.1.2. Structure Design
4.1.3. Fabrication of the Honeycomb COC Piezoelectric Foam
4.2. Characterization of COC Piezoelectret
4.2.1. Morphology
4.2.2. Quasistatic Piezoelectric Coefficient
4.2.3. Thermally Stimulated Discharge–Current Spectra
4.2.4. Electrical Hysteresis Loop and Butterfly Hysteresis Loop
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Luo, S.; Yang, M.C.; Liang, R.; Zeng, C. Poisson Ratio and Piezoresistive Sensing: A New Route to High-Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability. Adv. Funct. Mater. 2016, 26, 2900–2908. [Google Scholar] [CrossRef]
- Savolainen, A.; Kirjavainen, K. Electrothermomechanical film. Part I. Design and characteristics. J. Macromol. Sci. Chem. 1989, 26, 583–591. [Google Scholar] [CrossRef]
- Wegener, M.; Bauer, S. Microstorms in Cellular Polymers: A Route to Soft Piezoelectric Transducer Materials with Engineered Macroscopic Dipoles. ChemPhysChem 2005, 6, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, C. Low-Temperature CO2-Assisted Assembly of Cyclic Olefin Copolymer Ferroelectrets of High Piezoelectricity and Thermal Stability. Macromol. Chem. Phys. 2013, 214, 2733–2738. [Google Scholar] [CrossRef]
- Zhang, X.; Sessler, G.M.; Wang, Y. Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harvesters. J. Appl. Phys. 2014, 116, 074109. [Google Scholar] [CrossRef]
- Altafim, R.A.P.; Rychkov, D.; Wirges, W.; Gerhard, R.; Basso, H.C.; Altafim, R.A.C.; Melzer, M. Laminated tubular-channel ferroelectret systems from low-density polyethylene films and from fluoroethylene-propylene copolymer films—A comparison. Dielectr. Electr. Insul. IEEE Trans. 2012, 19, 1116–1123. [Google Scholar] [CrossRef]
- Behrendt, N. Tailored processing methods for cellular polycarbonate and polyetherimide films—new potentials for electret and piezoelectric applications. Dielectr. Electr. Insul. IEEE Trans. 2010, 17, 1113–1122. [Google Scholar] [CrossRef]
- Wirges, W.; Wegener, M.; Voronina, O.; Zirkel, L.; Gerhard-Multhaupt, R. Optimized Preparation of Elastically Soft, Highly Piezoelectric, Cellular Ferroelectrets from Nonvoided Poly(ethylene Terephthalate) Films. Adv. Funct. Mater. 2007, 17, 324–329. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; You, Q.; Sessler, G.M. Low-Cost, Large-Area, Stretchable Piezoelectric Films Based on Irradiation-Crosslinked Poly(propylene). Macromol. Mater. Eng. 2014, 299, 290–295. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Chen, J.; Wan, Z.; Wang, S.; Xia, Z. Piezoelectric properties of irradiation-crosslinked polypropylene ferroelectrets. Appl. Phys. Lett. 2007, 91, 182901. [Google Scholar] [CrossRef]
- Xiaoqing, Z.; Xinwu, Z.; Sessler, G.M.; Xiangshan, G. Piezoelectric performance of polytetrafluoroethylene ferroelectrets. In Proceedings of the Electrical Insulation and Dielectric Phenomena (CEIDP), 2013 IEEE Conference, Shenzhen, China, 20–23 October 2013; pp. 579–582. [Google Scholar] [CrossRef]
- Heikkinen, L.; Panula, H.; Lyyra, T.; Olkkonen, H.; Kiviranta, I.; Nevalainen, T.; Helminen, H. Electromechanical film sensor device for dynamic force recordings from canine limbs. Scand. J. Lab. Anim. Sci. 1997, 24, 85–92. [Google Scholar]
- Hämäläinen, M.K.; Parviainen, J.K.; Jaaskelainen, T. A novel micromovement actuator manufactured using plastic electromechanical film. Rev. Sci. Instrum. 1996, 67, 1598–1601. [Google Scholar] [CrossRef]
- Pondrom, P.; Hillenbrand, J.; Sessler, G.M.; Melz, T. Energy harvesting with single-layer and stacked piezoelectret films. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1470–1476. [Google Scholar] [CrossRef]
- Paajanen, M.; Lekkala, J.; Kirjavainen, K. ElectroMechanical Film (EMFi)—a new multipurpose electret material. Sens. Actuators A Phys. 2000, 84, 95–102. [Google Scholar] [CrossRef]
- Paajanen, M.; Lekkala, J.; Valimaki, H. Electromechanical modeling and properties of the electret film EMFI. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 629–636. [Google Scholar] [CrossRef]
- Fang, P.; Wegener, M.; Wirges, W.; Gerhard, R.; Zirkel, L. Cellular polyethylene-naphthalate ferroelectrets: Foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Appl. Phys. Lett. 2007, 90, 192908. [Google Scholar] [CrossRef]
- Fang, P.; Wirges, W.; Wegener, M.; Zirkel, L.; Gerhard, R. Cellular polyethylene-naphthalate films for ferroelectret applications: Foaming, inflation and stretching, assessment of electromechanically relevant structural features. e-Polymers 2008, 8, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Savolainen, A. Biaxially oriented polypropylene blown films. I: Morphological analysis of orientation in the machine direction. Polym. Eng. Sci. 1990, 30, 1258–1264. [Google Scholar] [CrossRef]
- Wegener, M.; Wirges, W.; Fohlmeister, J.; Tiersch, B.; Gerhard-Multhaupt, R. Two-step inflation of cellular polypropylene films: Void-thickness increase and enhanced electromechanical properties. J. Phys. D Appl. Phys. 2004, 37, 623. [Google Scholar] [CrossRef]
- Bauer, S.; Gerhard-Multhaupt, R.; Sessler, G.M. Ferroelectrets: Soft electroactive foams for transducers. Phys. Today 2004, 57, 37–43. [Google Scholar] [CrossRef]
- Nunes, P.; Ohlsson, P.; Ordeig, O.; Kutter, J. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 2010, 9, 145–161. [Google Scholar] [CrossRef]
- Montanari, G.C.; Fabiani, D.; Ciani, F.; Motori, A.; Paajanen, M.; Gerhard-Multhaupt, R.; Wegener, M. Charging properties and time-temperature stability of innovative polymeric cellular ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 238–248. [Google Scholar] [CrossRef]
- Saarimaki, E.; Paajanen, M.; Savijarvi, A.M.; Minkkinen, H.; Wegener, M.; Voronina, O.; Schulze, R.; Wirges, W.; Gerhard-Multhaupt, R. Novel heat durable electromechanical film: Processing for electromechanical and electret applications. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 963–972. [Google Scholar] [CrossRef]
- Wegener, M.; Paajanen, M.; Voronina, O.; Schulze, R.; Wirges, W.; Gerhard-Multhaupt, R. Voided cyclo-olefin polymer films: Ferroelectrets with high thermal stability. In Proceedings of the Electrets, ISE-12, 2005 12th International Symposium on Electrets, Salvador, Brazil, 11–14 September 2005; pp. 47–50. [Google Scholar] [CrossRef]
- Savijarvi, A.M.; Paajanen, M.; Saarimaki, E.; Minkkinen, H. Novel heat durable electromechanical films: Cellular film making from cyclic olefin polymers. In Proceedings of the Electrets, ISE-12, 2005 12th International Symposium on Electrets, Salvador, Brazil, 11–14 September 2005. [Google Scholar] [CrossRef]
- Hillenbrand, J.; Sessler, G.M. Piezoelectricity in cellular electret films. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 537–542. [Google Scholar] [CrossRef]
- Sessler, G.M. Hillenbrand, Electromechanical response of cellular electret films. J. Appl. Phys. Lett. 1999, 75, 3405–3407. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Behrendt, N.; Greiner, C.; Fischer, F.; Frese, T.; Altstädt, V.; Schmidt, H.W.; Giesa, R.; Hillenbrand, J.; Sessler, G.M. Morphology and electret behaviour of microcellular high glass temperature films. Appl. Phys. A 2006, 85, 87–93. [Google Scholar] [CrossRef]
- Cooper, A.I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 2000, 10, 207–234. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Li, H.; Liu, D.; Han, X.; Wingert, M.J.; Lee, L.J.; Koelling, K.W. A Review of CO2 Applications in the Processing of Polymers. Ind. Eng. Chem. Res. 2003, 42, 6431–6456. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, C.; Yao, Z.; Cao, K. Solid-State Foaming of Cyclic Olefin Copolymer by Carbon Dioxide. Ind. Eng. Chem. Res. 2013, 52, 9381–9396. [Google Scholar] [CrossRef]
- Jones, R.A.L. Amorphous materials: Glasses with liquid-like surfaces. Nat. Mater. 2003, 2, 645–646. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, G.; Sun, Z.; Xia, Z. Fabrication of fluoropolymer piezoelectrets by using rigid template: Structure and thermal stability. J. Appl. Phys. 2010, 108, 064113. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Xia, Z.; Qiu, X.; Wirges, W.; Gerhard, R.; Zeng, C.; Zhang, C.; Wang, B. Polarization and piezoelectricity in polymer films with artificial void structure. Appl. Phys. A 2011, 105, 197–205. [Google Scholar] [CrossRef]
- Enis, T. Numerical calculations of effective elastic properties of two cellular structures. J. Phys. D Appl. Phys. 2005, 38, 497. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X. Patterned piezo-, pyro-, and ferroelectricity of poled polymer electret. J. Appl. Phys. 2010, 108, 011101. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Gannepalli, A.; Chen, Q.N.; Liu, Y.; Zhou, Y.; Proksch, R.; Li, J. High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 2012, 4, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, P.; Knapp, M.; Glaum, J.; Fuess, H. Structural Description of the Macroscopic Piezo- and Ferroelectric Properties of Lead Zirconate Titanate. Phys. Rev. Lett. 2011, 107, 077602. [Google Scholar] [CrossRef] [PubMed]
- Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R.; Bauer, S.; Lacour, S.P.; Wagner, S. Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl. Phys. Lett. 2006, 89, 073501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, X.; Zeng, C. Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure. Micromachines 2023, 14, 829. https://doi.org/10.3390/mi14040829
Wang H, Wang X, Zeng C. Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure. Micromachines. 2023; 14(4):829. https://doi.org/10.3390/mi14040829
Chicago/Turabian StyleWang, Hui, Xiaolin Wang, and Changchun Zeng. 2023. "Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure" Micromachines 14, no. 4: 829. https://doi.org/10.3390/mi14040829
APA StyleWang, H., Wang, X., & Zeng, C. (2023). Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure. Micromachines, 14(4), 829. https://doi.org/10.3390/mi14040829