Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Texturing Techniques
2.2. Polymer Selections
2.3. Injection Molding Process Setup
2.4. Texture Characterization
2.4.1. Characterization of Texture Geometry
2.4.2. Characterization of Wetting Properties
3. Results and Discussions
3.1. Characterization of Steel Inserts
3.2. Characterization of Molded Plastic Parts
3.2.1. Replication of Features
Replication of Feature Width
Replication of Feature Height
3.2.2. Wetting Properties of Molded Parts
4. Conclusions
- The replication rate correlated with the polymer’s melt viscosity and thermal properties. A lower-viscosity polymer resulted in a higher degree of replication. Keeping the mold temperature above the glass transition temperature for semi-crystalline polymers resulted in a higher degree of replication.
- The replication depended on the orientation of inserts for those with a directional geometry. Altering the texture orientation produced differences in the replicated texture. Texture geometries that promoted air entrapment were characterized by a higher hesitation and lower replication.
- Hierarchical texturing created a hydrophobic wetting behavior. On the steel inserts, the experimental static contact angles showed a 30°–40° increase compared with the Cassie–Baxter contact angle values when only the geometrical properties of the micro-features were considered.
- The wetting behavior of the molded polymer samples showed different wetting states due to differences in the surface energy. PP samples exhibited a Cassie–Baxter wetting state, while the PMMA samples showed a composite wetting state of Cassie–Baxter and Wenzel states. For the lower aspect ratio textures, the wetting behavior followed the Wenzel model, while the Cassie–Baxter wetting model was predominant with a higher aspect ratio. The hierarchical structures increased the contact angles overall, but the nano-scale features’ effects need further investigation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Surace, R.; Trotta, G.; Bellantone, V.; Fassi, I. The micro injection moulding process for polymeric components manufacturing. In New Technologies–Trends, Innovations and Research; InTech: Rijeka, Croatia, 2012; pp. 65–90. [Google Scholar] [CrossRef]
- Mistura, G.; Pierno, M. Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces. Adv. Phys. X 2017, 2, 591–607. [Google Scholar] [CrossRef]
- Sun, T.; Wang, G.; Liu, H.; Feng, L.; Jiang, L.; Zhu, D. Control over the Wettability of an Aligned Carbon Nanotube Film. J. Am. Chem. Soc. 2003, 125, 14996–14997. [Google Scholar] [CrossRef] [PubMed]
- Krantz, J.; Caiado, A.; Piccolo, L.; Gao, P.; Sorgato, M.; Lucchetta, G.; Masato, D. Dynamic wetting characteristics of submicron-structured injection molded parts. Polym. Eng. Sci. 2022, 62, 2093–2101. [Google Scholar] [CrossRef]
- Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 1999, 11, 1365–1368. [Google Scholar] [CrossRef]
- Fu, Y.; Soldera, M.; Wang, W.; Milles, S.; Deng, K.; Voisiat, B.; Nielsch, K.; Lasagni, A.F. Wettability control of polymeric microstructures replicated from laser-patterned stamps. Sci. Rep. 2020, 10, 22428. [Google Scholar] [CrossRef]
- McHale, G.; Shirtcliffe, N.J.; Newton, M.I. Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir 2004, 20, 10146–10149. [Google Scholar] [CrossRef]
- Piccolo, L.; Sorgato, M.; Batal, A.; Dimov, S.; Lucchetta, G.; Masato, D. Functionalization of Plastic Parts by Replication of Variable Pitch Laser-Induced Periodic Surface Structures. Micromachines 2020, 11, 429. [Google Scholar] [CrossRef]
- Hansen, H.N.; Hocken, R.; Tosello, G. Replication of micro and nano surface geometries. CIRP Ann. 2011, 60, 695–714. [Google Scholar] [CrossRef]
- Masato, D.; Sorgato, M.; Lucchetta, G. Analysis of the influence of part thickness on the replication of micro-structured surfaces by injection molding. Mater. Des. 2016, 95, 219–224. [Google Scholar] [CrossRef]
- Sorgato, M.; Masato, D.; Lucchetta, G. Effect of vacuum venting and mold wettability on the replication of micro-structured surfaces. Microsyst. Technol. 2017, 23, 2543–2552. [Google Scholar] [CrossRef]
- Whiteside, B.R.; Martyn, M.T.; Coates, P.D.; Allan, P.S.; Hornsby, P.R.; Greenway, G. Micromoulding: Process characteristics and product properties. Plast. Rubber Compos. 2003, 32, 231–239. [Google Scholar] [CrossRef]
- Gao, P.; Kundu, A.; Coulter, J. Vibration-assisted injection molding: An efficient process for enhanced crystallinity development and mechanical characteristics for poly lactic acid. Int. J. Adv. Manuf. Technol. 2022, 121, 3111–3124. [Google Scholar] [CrossRef]
- Chien, R.-D.; Jong, W.-R.; Chen, S.-C. Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect. J. Micromech. Microeng. 2005, 15, 1389–1396. [Google Scholar] [CrossRef]
- Chen, S.C.; Tsai, R.I.; Chien, R.D.; Lin, T.K. Preliminary study of polymer melt rheological behavior flowing through micro-channels. Int. Commun. Heat Mass Transf. 2005, 32, 501–510. [Google Scholar] [CrossRef]
- Masato, D.; Piccolo, L.; Lucchetta, G.; Sorgato, M. Texturing Technologies for Plastics Injection Molding: A Review. Micromachines 2022, 13, 1211. [Google Scholar] [CrossRef]
- Sorgato, M.; Masato, D.; Lucchetta, G. Effects of machined cavity texture on ejection force in micro injection molding. Precis. Eng. 2017, 50, 440–448. [Google Scholar] [CrossRef]
- Fleischer, J.; Kotschenreuther, J. The manufacturing of micro molds by conventional and energy-assisted processes. Int. J. Adv. Manuf. Technol. 2007, 33, 75–85. [Google Scholar] [CrossRef]
- Katoh, T.; Tokuno, R.; Zhang, Y.; Abe, M.; Akita, K.; Akamatsu, M. Micro injection molding for mass production using LIGA mold inserts. Microsyst. Technol. 2008, 14, 1507–1514. [Google Scholar] [CrossRef]
- Sorgato, M.; Masato, D.; Lucchetta, G. Tribological effects of mold surface coatings during ejection in micro injection molding. J. Manuf. Process. 2018, 36, 51–59. [Google Scholar] [CrossRef]
- Orazi, L.; Sorgato, M.; Piccolo, L.; Masato, D.; Lucchetta, G. Generation and Characterization of Laser Induced Periodic Surface Structures on Plastic Injection Molds. Lasers Manuf. Mater. Process. 2020, 7, 207–221. [Google Scholar] [CrossRef]
- Dempsey, D.; McDonald, S.; Masato, D.; Barry, C. Characterization of Stereolithography Printed Soft Tooling for Micro Injection Molding. Micromachines 2020, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Loaldi, D.; Piccolo, L.; Brown, E.; Tosello, G.; Shemelya, C.; Masato, D. Hybrid Process Chain for the Integration of Direct Ink Writing and Polymer Injection Molding. Micromachines 2020, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Genolet, G.; Lorenz, H. UV-LIGA: From Development to Commercialization. Micromachines 2014, 5, 486–495. [Google Scholar] [CrossRef]
- Santos, A.; Deen, J.; Marsal, L.F. Low-cost fabrication technologies for nanostructures: State-of-the-art and potential. Nanotechnology 2015, 26, 042001. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, A.A.G.; Costa, H.L.; Lonardo, P.M.; Lucca, D.A. Advances in engineered surfaces for functional performance. CIRP Ann. 2008, 57, 750–769. [Google Scholar] [CrossRef]
- Unno, N.; Taniguchi, J. 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology. Adv. Opt. Technol. 2019, 8, 253–266. [Google Scholar] [CrossRef]
- Wallrabe, U.; Tabata, O.; Korvink, J.G. LIGA and Its Applications; Wiley: Hoboken, NJ, USA, 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Gregorčič, P.; Šetina-Batič, B.; Hočevar, M. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences. Appl. Phys. A 2017, 123, 766. [Google Scholar] [CrossRef]
- Baldi-Boleda, T.; Colominas, C.; García-Granada, A. Femtosecond Laser Texturization on Coated Steel. Coatings 2022, 12, 1602. [Google Scholar] [CrossRef]
- Piccolo, L.; Wang, Z.; Lucchetta, G.; Shen, M.; Masato, D. Ultrafast Laser Texturing of Stainless Steel in Water and Air Environment. Lasers Manuf. Mater. Process. 2022, 9, 434–453. [Google Scholar] [CrossRef]
- Martinez-Calderon, M.; Haase, T.A.; Novikova, N.I.; Wells, F.S.; Low, J.; Willmott, G.R.; Broderick, N.G.; Aguergaray, C. Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring. Prog. Org. Coatings 2022, 163, 106625. [Google Scholar] [CrossRef]
- Yao, D.; Kim, B. Injection molding high aspect ratio microfeatures. J. Inject. Molding Technol. 2002, 6, 11–17. [Google Scholar]
- Masato, D.; Sorgato, M.; Lucchetta, G. Characterization of the micro injection-compression molding process for the replication of high aspect ratio micro-structured surfaces. Microsyst. Technol. 2017, 23, 3661–3670. [Google Scholar] [CrossRef]
- Liou, A.-C.; Chen, R.-H. Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int. J. Adv. Manuf. Technol. 2006, 28, 1097–1103. [Google Scholar] [CrossRef]
- Zhang, Y.; Lo, C.-W.; Taylor, J.A.; Yang, S. Replica Molding of High-Aspect-Ratio Polymeric Nanopillar Arrays with High Fidelity. Langmuir 2006, 22, 8595–8601. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Peta, K.; Bartkowiak, T.; Galek, P.; Mendak, M. Contact angle analysis of surface topographies created by electric discharge machining. Tribol. Int. 2021, 163, 107139. [Google Scholar] [CrossRef]
- Khan, S.A.; Boltaev, G.S.; Iqbal, M.; Kim, V.; Ganeev, R.A.; Alnaser, A.S. Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Appl. Surf. Sci. 2021, 542, 148560. [Google Scholar] [CrossRef]
- Giannuzzi, G.; Gaudiuso, C.; Di Mundo, R.; Mirenghi, L.; Fraggelakis, F.; Kling, R.; Lugarà, P.M.; Ancona, A. Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses. Appl. Surf. Sci. 2019, 494, 1055–1065. [Google Scholar] [CrossRef]
- Rajan, R.A.; Ngo, C.-V.; Yang, J.; Liu, Y.; Rao, K.; Guo, C. Femtosecond and picosecond laser fabrication for long-term superhydrophilic metal surfaces. Opt. Laser Technol. 2021, 143, 107241. [Google Scholar] [CrossRef]
- Zhang, N.; Chu, J.S.; Byrne, C.J.; Browne, D.; Gilchrist, M. Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert. J. Micromech. Microeng. 2012, 22, 065019. [Google Scholar] [CrossRef]
- Kazmer, D. Injection Mold Design Engineering. p. 529. Available online: https://books.google.com/books/about/Injection_Mold_Design_Engineering.html?id=kjnhCwAAQBAJ (accessed on 28 November 2022).
- Sha, B.; Dimov, S.; Griffiths, C.; Packianather, M.S. Investigation of micro-injection moulding: Factors affecting the replication quality. J. Mater. Process. Technol. 2007, 183, 284–296. [Google Scholar] [CrossRef]
- Guan, B.; Pai, J.-H.; Cherrill, M.; Michalatos, B.; Priest, C. Injection moulding of micropillar arrays: A comparison of poly(methyl methacrylate) and cyclic olefin copolymer. Microsyst. Technol. 2022, 28, 2083–2091. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Zhang, N. A Review of Microinjection Moulding of Polymeric Micro Devices. Micromachines 2022, 13, 1530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, H.; Zhang, H.; Fang, F.; Gilchrist, M. Geometric Replication Integrity of Micro Features Fabricated Using Variotherm Assisted Micro Injection Moulding. Procedia CIRP 2018, 71, 390–395. [Google Scholar] [CrossRef]
- Grewal, H.; Cho, I.-J.; Oh, J.-E.; Yoon, E.-S. Effect of topography on the wetting of nanoscale patterns: Experimental and modeling studies. Nanoscale 2014, 6, 15321–15332. [Google Scholar] [CrossRef]
- Lantada, A.D.; Piotter, V.; Plewa, K.; Barié, N.; Guttmann, M.; Wissmann, M. Toward mass production of microtextured microdevices: Linking rapid prototyping with microinjection molding. Int. J. Adv. Manuf. Technol. 2015, 76, 1011–1020. [Google Scholar] [CrossRef]
- Wang, X.; Fu, C.; Zhang, C.; Qiu, Z.; Wang, B. A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials 2022, 15, 4747. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Cansoy, C.E. Range of Applicability of the Wenzel and Cassie−Baxter Equations for Superhydrophobic Surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef]
- He, B.; Patankar, N.A.; Lee, J. Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces. Langmuir 2003, 19, 4999–5003. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. How Wenzel and Cassie Were Wrong. Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef]
- Whyman, G.; Bormashenko, E. How to Make the Cassie Wetting State Stable? Langmuir 2011, 27, 8171–8176. [Google Scholar] [CrossRef]
- Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460. [Google Scholar] [CrossRef]
- Chakraborty, M.; Weibel, J.A.; Schaber, J.A.; Garimella, S.V. The Wetting State of Water on a Rose Petal. Adv. Mater. Interfaces 2019, 6, 1900652. [Google Scholar] [CrossRef]
- Cabanillas, B.; Mallma-Medina, A.; Petkova-Gueorguieva, M.; Alvitez-Temoche, D.; Mendoza, R.; Mayta-Tovalino, F. Influence of the Surface Energy of Different Brands of Polymethyl Methacrylate on the Adherence of Candida albicans: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2021, 11, 6–12. [Google Scholar]
- Schreier, P.; Trassl, C.; Altstädt, V. Surface modification of polypropylene based particle foams. AIP Conf. Proc. 2014, 1593, 378–382. [Google Scholar] [CrossRef]
- Song, K.; Lee, J.; Choi, S.-O.; Kim, J. Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish. Polymers 2019, 11, 498. [Google Scholar] [CrossRef]
Polymer | Abbreviation | Applications |
---|---|---|
Polyoxymethylene | POM | Micro filters and gears |
Liquid Crystal Polymers | LCP | Micro connectors, micro-electronic devices |
Polycarbonate | PC | Optical lenses, sensor discs |
Polymethylmethacrylate | PMMA | Optical lenses, optical fiber connectors |
Polypropylene | PP | Self-cleaning surfaces, packaging |
Polylactic acid | PLA | Biomedical implants |
Technology | Feature Dimensions | Texturing Speed | Cost | Advantage | Limitation | Reference |
---|---|---|---|---|---|---|
Electroplating | 20–50 µm | Low | Low | Component is resistant to tarnishing | Difficult to dispose of chemical waste | Genolet et al. [24] |
Anodization | >0.1 µm | Low | Low | Control of surface finish | Can only be applied to aluminum | Santos et al. [25] |
Chemical Etching | Min. dimension depends on the masking used | Low | Low | Large area texturing | Undercut Difficult to control | Bruzzone et al. [26] |
Lithography | Min. 5 nm | Low | High | Very precise structures | Expensive Time-consuming | Unno et al. [27] |
LIGA | Min. 500 nm | Low | High | Very precise structures | Expensive Time-consuming No Drafts | Saile et al. [28] |
Laser Writing | Min. 20 µm | Low | Med | 3D shape texturing Relatively inexpensive tooling | Heat affect zone (HAZ). Presence of a recast layer | Gregorčič et al. [29] |
Ultrafast laser texturing | Max 100 µm Min. 100 nm | High | Med | Hierarchical structures with up to 2 levels | Regularity of pattern, shape of the structures challenging | Piccolo et al. [8] |
Parameter | Unit | Value |
---|---|---|
Max power | W | 3 (IR)–1.8 (GR) |
Max pulse energy | µJ | 30 (IR)–18 (GR) |
Oscillator frequency | MHz | 40 |
Pulse repetition rate | kHz | 1000 (IR & GR) |
M2 | - | 1.3 |
Insert Index | Low Magnification | High Magnification |
---|---|---|
A | ||
B | ||
C | ||
D |
Material | Glass Transition Temperature (°C) | Melt Flow Index @230 °C/5.0kg (g/10 min) | Density (kg/m3) | Melting/Softening Temperature (°C) |
---|---|---|---|---|
PMMA | 85 | 24 | 1180 | 180–200 |
PP | −20 | 6 | 905 | 180–220 |
Processing Parameters | Material | |
---|---|---|
PP | PMMA | |
Shot Size (mm) | 10 | 10 |
Nozzle Temperature (°C) | 230 | 230 |
Injection Velocity (mm/s) | 158 | 158 |
Packing Pressure (MPa) | 130 | 130 |
Packing Time (s) | 3 | 3 |
Mold Temperature (°C) | 80 | 80 |
Cooling Time (s) | 30 | 25 |
Width/Diameter (μm) | Depth (μm) | AR | TSA (μm2) | |||
---|---|---|---|---|---|---|
Insert | Avg. | Std. Dev. | Avg. | Std. Dev. | ||
Insert A | 20.0 | 0.35 | 5.4 | 1.96 | 0.2 | 10,240 |
Insert B | 12.5 | 0.49 | 10.9 | 2.69 | 0.9 | 18,082 |
Insert C | 15.0 | 0.25 | 15.4 | 1.26 | 1.0 | 11,025 |
Insert D | 12.0 | 0.30 | 14.1 | 1.80 | 1.2 | 15,167 |
Static Contact Angle (°) | Percent Change (%) | ||
---|---|---|---|
Insert ID | Avg. | Std. Dev. | |
Blank | 74.6 | 1.1 | N/A |
Insert A | 145.0 | 2.8 | 94.4 |
Insert B | 126.7 | 3.5 | 69.8 |
Insert C | 135.4 | 2.5 | 81.5 |
Insert D | 135.0 | 2.9 | 81.0 |
Insert ID | Width (µm) | Height (µm) | ||
---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |
Blank | N/A | N/A | N/A | N/A |
Insert A | 13.2 | 0.9 | 4.4 | 0.49 |
Insert B | 10.1 | 2.1 | 2.0 | 0.31 |
Insert C | 6.5 | 0.4 | 4.1 | 0.26 |
Insert C* | 6.8 | 1.1 | 10.7 | 0.31 |
Insert D | 5.1 | 0.5 | 3.2 | 0.05 |
Insert D* | 5 | 0.4 | 10.6 | 0.41 |
Insert ID | Width (µm) | Height (µm) | ||
---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |
Blank | N/A | N/A | N/A | N/A |
Insert A | 11.2 | 0.4 | 2.8 | 0.16 |
Insert B | 9.5 | 0.4 | 1.1 | 0.37 |
Insert C | 5.4 | 0.5 | 4.4 | 0.32 |
Insert C* | 5.6 | 0.7 | 5.9 | 0.57 |
Insert D | 4.6 | 0.4 | 3.1 | 0.14 |
Insert D* | 4.9 | 0.4 | 4.1 | 0.29 |
Material | PP | PMMA | ||
---|---|---|---|---|
Static Contact Angle (°) | Average | Std. Dev. | Average | Std. Dev. |
Blank | 75.7 | 0.5 | 69.2 | 0.6 |
Insert A | 139 | 2.1 | 97 | 0.5 |
Insert B | 116.9 | 4.1 | 96.6 | 1.6 |
Insert C | 127.6 | 2.2 | 76.7 | 1.4 |
Insert C* | 131.6 | 1.1 | 107.2 | 2.4 |
Insert D | 118.7 | 0.3 | 86.4 | 2.6 |
Insert D* | 124.8 | 2.7 | 109.5 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; MacKay, I.; Gruber, A.; Krantz, J.; Piccolo, L.; Lucchetta, G.; Pelaccia, R.; Orazi, L.; Masato, D. Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding. Micromachines 2023, 14, 863. https://doi.org/10.3390/mi14040863
Gao P, MacKay I, Gruber A, Krantz J, Piccolo L, Lucchetta G, Pelaccia R, Orazi L, Masato D. Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding. Micromachines. 2023; 14(4):863. https://doi.org/10.3390/mi14040863
Chicago/Turabian StyleGao, Peng, Ian MacKay, Andrea Gruber, Joshua Krantz, Leonardo Piccolo, Giovanni Lucchetta, Riccardo Pelaccia, Leonardo Orazi, and Davide Masato. 2023. "Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding" Micromachines 14, no. 4: 863. https://doi.org/10.3390/mi14040863
APA StyleGao, P., MacKay, I., Gruber, A., Krantz, J., Piccolo, L., Lucchetta, G., Pelaccia, R., Orazi, L., & Masato, D. (2023). Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding. Micromachines, 14(4), 863. https://doi.org/10.3390/mi14040863