Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Characterization of Multilayered Thin Film Meanders
3.2. GMI Measurements of Multilayered Thin Film Meanders under Bending Loads
3.2.1. Stress Estimation of Meanders on Different Flexible Substrates
3.2.2. Giant Magnetoimpedance Effect under Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Panina, L.; Mohri, K. Magneto-impedance in multilayer films. Sens. Actuators A Phys. 2000, 81, 71–77. [Google Scholar] [CrossRef]
- Morikawa, T.; Nishibe, Y.; Yamadera, H.; Nonomura, Y.; Takeuchi, M.; Sakata, J.; Taga, Y. Enhancement of giant magneto-impedance in layered film by insulator separation. IEEE Trans. Magn. 1996, 32, 4965–4967. [Google Scholar] [CrossRef]
- Kikuchi, H.; Tanii, M.; Umezaki, T. Effects of parallel and meander configuration on thin-film magnetoimpedance element. AIP Adv. 2020, 10, 015334. [Google Scholar] [CrossRef]
- Sayad, A.; Uddin, S.M.; Yao, S.; Wilson, H.; Chan, J.; Zhao, H.; Donnan, G.; Davis, S.; Skafidas, E.; Yan, B.; et al. A magnetoimpedance biosensor microfluidic platform for detection of glial fibrillary acidic protein in blood for acute stroke classification. Biosens. Bioelectron. 2022, 211, 114410. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, V.O.; Hwang, K.Y.; Nguyen, D.; Rahman, Y.; Albrecht, C.; Senator, B.; Thiabgoh, O.; Devkota, J.; Bui, V.D.A.; Lam, D.S.; et al. Magnetoimpedance Biosensors and Real-Time Healthcare Monitors: Progress, Opportunities, and Challenges. Biosensors 2022, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, Y.; Lei, C.; Luo, J.; Xie, S.; Pu, H. Magnetic impedance biosensor: A review. Biosens. Bioelectron. 2017, 90, 418–435. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Lei, C.; Sun, X.-C.; Zhou, Y. Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Microchim. Acta 2016, 183, 1831–1837. [Google Scholar] [CrossRef]
- Nakai, T. Study on Detection of a Small Magnetic Particle Using Thin Film Magneto-Impedance Sensor with Subjecting to Strong Normal Field. Micromachines 2022, 13, 1199. [Google Scholar] [CrossRef]
- Nakai, T. Nondestructive Detection of Magnetic Contaminant in Aluminum Casting Using Thin Film Magnetic Sensor. Sensors 2021, 21, 4063. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B.; Fu, X. Pressure Dependence of the High-Frequency Impedance of NiFe/Cu/NiFe/Cu/Cr Multilayer Films. IEEE Magn. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Chen, J.-A.; Ding, W.; Zhou, Y.; Cao, Y.; Zhou, Z.-M.; Zhang, Y.-M. Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films. Mater. Lett. 2006, 60, 2554–2557. [Google Scholar] [CrossRef]
- Zhou, Y.; Mao, X.-H.; Chen, J.-A.; Ding, W.; Gao, X.-Y.; Zhou, Z.-M. Stress-impedance effects in layered FeSiB/Cu/FeSiB films with a meander line structure. J. Magn. Magn. Mater. 2004, 292, 255–259. [Google Scholar] [CrossRef]
- da Silva, G.H.B.; Ribeiro, P.R.T.; Vilela, G.L.S.; Raktkovisk, D.R.; Abrão, J.E.; Santos, E.; Azevedo, A.; Rodrigues, A.R.; Padrón-Hernández, E.; Rezende, S.M.; et al. Investigation of the GMI effect in multilayered sensing elements deposited over silicon and glass substrates. J. Magn. Magn. Mater. 2022, 560, 169678. [Google Scholar] [CrossRef]
- Han, C.; Xu, M.; Tang, J.; Liu, Y.; Zhou, Z. Giant magneto-impedance sensor with working point selfadaptation for unshielded human bio-magnetic detection. Virtual Real. Intell. Hardw. 2022, 4, 38–54. [Google Scholar] [CrossRef]
- Hanna, A.N.; Kutbee, A.T.; Subedi, R.C.; Ooi, R.; Hussain, M.M. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays. Small 2018, 14, 1703200. [Google Scholar] [CrossRef] [PubMed]
- Hines, L.; Petersen, K.H.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arribas, A.; Combarro, L.; Goiriena-Goikoetxea, M.; Kurlyandskaya, G.V.; Svalov, A.V.; Fernandez, E.; Orue, I.; Feuchtwanger, J. Thin-Film Magnetoimpedance Structures onto Flexible Substrates as Deformation Sensors. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Chlenova, A.A.; Melnikov, G.Y.; Svalov, A.V.; Kurlyandskaya, G.V. Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype. AIP Conf. Proc. 2016, 1767, 20004. [Google Scholar]
- Kurlyandskaya, G.; Fernández, E.; Svalov, A.; Beitia, A.B.; García-Arribas, A.; Larrañaga, A. Flexible thin film magnetoimpedance sensors. J. Magn. Magn. Mater. 2016, 415, 91–96. [Google Scholar] [CrossRef]
- Fernández, E.; Kurlyandskaya, G.V.; García-Arribas, A.; Svalov, A.V. Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing. Nanoscale Res. Lett. 2012, 7, 230. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Kavaldzhiev, M.N.; Kosel, J. Flexible magnetoimpedance sensor. J. Magn. Magn. Mater. 2015, 378, 499–505. [Google Scholar] [CrossRef]
- Jin, F.; Xu, L.; Jiang, J.; Yang, B.; Zhao, Z.; Dong, K.; Song, J.; Mo, W.; Hui, Y. Performance of giant magneto-impedance effect of CoFeSiB films on different substrates. J. Magn. Magn. Mater. 2021, 540, 168463. [Google Scholar] [CrossRef]
- Zighem, F.; Faurie, D. A review on nanostructured thin films on flexible substrates: Links between strains and magnetic properties. J. Phys. Condens. Matter 2021, 33, 233002. [Google Scholar] [CrossRef]
- Agra, K.; Bohn, F.; Mori, T.; Callegari, G.; Dorneles, L.; Correa, M. Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress. J. Magn. Magn. Mater. 2016, 420, 81–87. [Google Scholar] [CrossRef]
- Agra, K.; Mori, T.; Dorneles, L.; Escobar, V.; Silva, U.; Chesman, C.; Bohn, F.; Corrêa, M. Dynamic magnetic behavior in non-magnetostrictive multilayered films grown on glass and flexible substrates. J. Magn. Magn. Mater. 2013, 355, 136–141. [Google Scholar] [CrossRef]
- Kwon, J.; Kwak, W.; Cho, B.K. Magnetization Manipulation of a Flexible Magnetic Sensor by Controlled Stress Application. Sci. Rep. 2018, 8, 15765. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.-Y.; Yang, M.-Y.; Zhang, B.; Yang, G.; Wang, S.-G.; Wang, K.-Y. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin. Phys. B 2015, 24, 077501. [Google Scholar] [CrossRef]
- Fallahi, H.; Zhang, J.; Phan, H.-P.; Nguyen, N.-T. Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines 2019, 10, 830. [Google Scholar] [CrossRef]
- García-Chocano, V.M.; García-Miquel, H. DC and AC linear magnetic field sensor based on glass coated amorphous mi-crowires with Giant Magnetoimpedance. J. Magn. Magn. Mater. 2015, 378, 485–492. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Xie, W.; Yang, C.; Jia, C.; Ma, L.; Zhao, Z. Enhanced asymmetric giant magneto-impedance effect and linearity in sandwich FePd/FINEMET/FePd composite ribbons. J. Magn. Magn. Mater. 2021, 543, 168597. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, T.; Yang, Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 2020, 389, 124433. [Google Scholar] [CrossRef]
- García, J.M.B.; Fernández, E.; Svalov, A.V.; Kurlyandskaya, G.V.; Barrainkua, A.; Navas, D.; Barandiarán, J.M. Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies. Eur. Phys. J. B 2013, 86, 136. [Google Scholar] [CrossRef]
- Corte-León, P.; Talaat, A.; Zhukova, V.; Ipatov, M.; Blanco, J.M.; Gonzalez, J.; Zhukov, A. Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires. Appl. Sci. 2020, 10, 981. [Google Scholar] [CrossRef]
- Shuai, S.; Lu, S.; Xiang, Z.; Lu, W. Stress-induced giant magneto-impedance effect of amorphous CoFeNiSiPB ribbon with magnetic field annealing. J. Magn. Magn. Mater. 2022, 551, 169131. [Google Scholar] [CrossRef]
- Panina, L.; Mohri, K.; Uchiyama, T.; Noda, M.; Bushida, K. Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 1995, 31, 1249–1260. [Google Scholar] [CrossRef]
- Kurita, H.; Diguet, G.; Froemel, J.; Narita, F. Stress sensor performance of sputtered Fe-Si-B alloy thin coating under tensile and bending loads. Sens. Actuators A Phys. 2022, 343, 113652. [Google Scholar] [CrossRef]
h (mm) | σPI (MPa) | σPET (MPa) |
---|---|---|
1.7 | −260 | −32 |
3.1 | −130 | −16 |
4.1 | −65 | −8 |
5 | 0 | 0 |
5.9 | 65 | 8 |
6.9 | 130 | 16 |
8.3 | 260 | 32 |
Material | Poisson’s | Young’s Modulus (×103 MPa) | Thickness (μm) |
---|---|---|---|
Adhesive layer | 0.3 | 4.5 | 30 |
FeNi film | 0.31 | 129 | 1 |
Cu film | 0.32 | 117 | 0.9 |
PI substrate | 0.3 | 4.8 | 300 (experiment) |
PET substrate | 0.37 | 2.9 | 100 (experiment) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, Z.; Meng, Z.; Sun, X.; Huang, Y.; Guo, Y.; Yang, Z. Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates. Micromachines 2023, 14, 1002. https://doi.org/10.3390/mi14051002
Liu M, Wang Z, Meng Z, Sun X, Huang Y, Guo Y, Yang Z. Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates. Micromachines. 2023; 14(5):1002. https://doi.org/10.3390/mi14051002
Chicago/Turabian StyleLiu, Mengyu, Zhenbao Wang, Ziqin Meng, Xuecheng Sun, Yong Huang, Yongbin Guo, and Zhen Yang. 2023. "Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates" Micromachines 14, no. 5: 1002. https://doi.org/10.3390/mi14051002
APA StyleLiu, M., Wang, Z., Meng, Z., Sun, X., Huang, Y., Guo, Y., & Yang, Z. (2023). Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates. Micromachines, 14(5), 1002. https://doi.org/10.3390/mi14051002