Analysis of Trapping Effect on Large-Signal Characteristics of GaN HEMTs Using X-Parameters and UV Illumination
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Measured X-Parameters of AlGaN/GaN HEMTs
3.2. Measured X-Parameters of AlGaN/GaN MIS-HEMTs
3.3. Large-Signal Modeling Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Power AlN-GaN HEMTs with record power-added-efficiency 70% at 40 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium, Los Angeles, CA, USA, 4–6 August 2020. [Google Scholar]
- Nakajima, S. GaN HEMTs for 5G base station applications. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Li, W.; Romanczyk, B.; Akso, E.; Guidry, M.; Hatui, N.; Wurm, C.; Liu, W.; Shrestha, P.; Collins, H.; Clymore, C.; et al. Record 94 GHz performance from N-polar GaN-on-sapphire MIS-HEMTs: 5.8 W/mm and 38.5% PAE. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2022. [Google Scholar]
- Wei, J.; Jiang, H.; Jiang, Q.; Chen, K.J. Proposal of a GaN/SiC hybrid field-effect transistor for power switching applications. IEEE Trans. Electron Devices 2016, 63, 2469–2473. [Google Scholar] [CrossRef]
- Cui, P.; Jia, M.; Chen, H.; Lin, G.; Zhang, J.; Gundlach, L.; Xiao, J.Q.; Zeng, Y. InAlN/GaN HEMT on Si with fmax = 270 GHz. IEEE Trans. Electron Devices 2021, 68, 994–999. [Google Scholar] [CrossRef]
- Marti, D.; Lugani, L.; Carlin, J.F.; Malinverni, M.; Grandjean, N.; Bolognesi, C.R. W-band MMIC amplifiers based on AlInN/GaN HEMTs grown on silicon. IEEE Electron Device Lett. 2016, 37, 1025–1028. [Google Scholar] [CrossRef]
- Chu, R.; Shen, L.; Fichtenbaum, N.; Chen, Z.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Correlation between DC–RF dispersion and gate leakage in deeply recessed GaN/AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2008, 29, 303–305. [Google Scholar]
- Bergsten, J.; Thorsell, M.; Adolp, H.D.; Chen, J.-T.; Kordina, O.; Sveinbjörnsson, E.O.; Rorsman, N. Electron trapping in extended defects in microwave AlGaN/GaN HEMTs with carbon-doped buffers. IEEE Trans. Electron Devices 2018, 65, 2446–2453. [Google Scholar] [CrossRef]
- Strenaer, R.; Guhel, Y.; Gaquière, C.; Boudart, B. Trapping effect in AlInN/GaN HEMTs: A study based on photoionization and pulsed electrical measurements. IEEE Trans. Electron Devices 2022, 69, 6010–6015. [Google Scholar] [CrossRef]
- Lin, Y.; Kao, M.-L.; Weng, Y.-C.; Dee, C.-F.; Chen, S.-C.; Kuo, H.-C.; Lin, C.-H.; Chang, E.-Y. Buffer traps effect on GaN-on-Si high-electron-mobility transistor at different substrate voltages. Micromachines 2022, 13, 2140. [Google Scholar] [CrossRef]
- Lu, X.; Yu, K.; Jiang, H.; Zhang, A.; Lau, K.M. Study of Interface traps in AlGaN/GaN MISHEMTs using LPCVD SiNx as gate dielectric. IEEE Trans. Electron Devices 2017, 64, 824–831. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Santi, C.D.; Ruzzarin, M.; Zanoni, E. Positive and negative threshold voltage instability in GaN based transistors. Microelectron. Reliab. 2018, 80, 257–265. [Google Scholar] [CrossRef]
- Liu, J.; Mi, M.; Zhu, J.; Liu, S.; Wang, P.; Zhou, Y.; Zhu, Q.; Wu, M.; Lu, H.; Hou, B.; et al. Improved power performance and the mechanism of AlGaN/GaN HEMTs using Si-rich SiN/Si3N4 bilayer passivation. IEEE Trans. Electron Devices 2022, 69, 631–636. [Google Scholar] [CrossRef]
- Aoki, H.; Sakairi, H.; Kuroda, N.; Nakamura, Y.; Chikamatsu, K.; Nakahara, K. AlGaN/GaN MIS HEMT modeling of frequency dispersion and self-heating effects. In Proceedings of the IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, VIC, Australia, 15–17 August 2018. [Google Scholar]
- Jardel, O.; Groote, F.D.; Reveyrand, T.; Jacquet, J.-C.; Charbonniaud, C.; Teyssier, J.-P.; Floriot, D.; Quéré, R. An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR. IEEE Trans. Microw. Theory Tech. 2007, 55, 2660–2669. [Google Scholar] [CrossRef]
- Jarndal, A.; Kompa, G. Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion. IEEE Trans. Electron Devices 2007, 54, 2830–2836. [Google Scholar] [CrossRef]
- Yuk, K.; Branner, G.R.; McQuate, D. An improved empirical large-signal model for high-power GaN HEMTs including self-heating and charge-trapping effects. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009. [Google Scholar]
- Martín-Guerrero, T.M.; Santarelli, A.; Gibiino, G.P.; Traverso, P.A.; Camacho-Peñalosa, C.; Filicori, F. Automatic extraction of measurement-based large-signal FET Models by nonlinear function sampling. IEEE Trans. Microw. Theory Tech. 2020, 68, 1627–1636. [Google Scholar] [CrossRef]
- Niessen, D.; Gibiino, G.P.; Cignani, R.; Santarelli, A.; Schreurs, D.M.M.-P.; Filicori, F. Charge-controlled GaN FET modeling by displacement current integration from frequency-domain NVNA measurements. IEEE Trans. Microw. Theory Tech. 2016, 64, 4382–4393. [Google Scholar] [CrossRef]
- Xu, J.; Jones, R.; Harris, S.A.; Nielsen, T.; Root, D.E. Dynamic FET model–DynaFET–for GaN transistors from NVNA active source injection measurements. In Proceedings of the IEEE MTT-S International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Barmuta, P.; Płoński, P.; Czuba, K.; Avolio, G.; Schreurs, D. Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks. In Proceedings of the International Conference on Microwaves, Radar & Wireless Communications, Warsaw, Poland, 21–23 May 2012. [Google Scholar]
- Horn, J.; Root, D.E.; Simpson, G. GaN device modeling with X-parameters. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium, Monterey, CA, USA, 3–6 October 2010. [Google Scholar]
- Ayari, L.; Xiong, A.; Maziere, C.; Ouardirhi, Z.; Gasseling, T. A robust and reliable behavioral model of high power GaN HEMTS for RF Doherty amplifier application. In Proceedings of the ARFTG Microwave Measurement Conference, Philadelphia, PA, USA, 10–15 June 2018. [Google Scholar]
- Verspecht, J.; Root, D.E. Polyharmonic distortion modeling. IEEE Microw. Mag. 2006, 7, 44–57. [Google Scholar] [CrossRef]
- Pelaez-Perez, A.M.; Woodington, S.; Fernandez-Barciela, M.; Tasker, P.J.; Alonso, J.I. Large-signal oscillator design procedure utilizing analytical X-parameters closed-form expressions. IEEE Trans. Microw. Theory Tech. 2012, 60, 3126–3136. [Google Scholar] [CrossRef]
- Baylis, C.; Marks, R.J.; Martin, J.; Miller, H.; Moldovan, M. Going nonlinear. IEEE Microw. Mag. 2011, 12, 55–64. [Google Scholar] [CrossRef]
- Zaidi, Z.H.; Houston, P.A. Highly sensitivity UV detection mechanism in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2013, 60, 2776–2781. [Google Scholar] [CrossRef]
- Nagarajan, V.; Chen, K.-M.; Chen, B.-Y.; Huang, G.-W.; Chuang, C.-W.; Lin, C.-J.; Anandan, D.; Wu, C.-H.; Han, P.-C.; Singh, S.K.; et al. Study of charge trapping effects on AlGaN/GaN HEMTs under UV illumination with pulsed I-V measurement. IEEE Trans. Device Mater. Reliab. 2020, 20, 436–441. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Chen, K.-M.; Lin, C.-J.; Nagarajan, V.; Chang, E.Y.; Lin, C.-W.; Huang, G.-W. Analysis of high-frequency behavior of AlGaN/GaN HEMTs and MIS-HEMTs under UV illumination. ECS J. Solid State Sci. Technol. 2021, 10, 055004. [Google Scholar] [CrossRef]
- Root, D.E.; Verspecht, J.; Xu, J. Closed-form solutions to large-signal PA problems: Wirtinger calculus applied to X-parameter. In Proceedings of the 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 8–10 October 2017. [Google Scholar]
- Warren, W.L.; Kanicki, J.; Robertson, J.; Poindexter, E.H.; McWhorter, P.J. Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films. J. Appl. Phys. 1993, 74, 4034–4046. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-M.; Lin, C.-J.; Chuang, C.-W.; Pai, H.-C.; Chang, E.-Y.; Huang, G.-W. Analysis of Trapping Effect on Large-Signal Characteristics of GaN HEMTs Using X-Parameters and UV Illumination. Micromachines 2023, 14, 1011. https://doi.org/10.3390/mi14051011
Chen K-M, Lin C-J, Chuang C-W, Pai H-C, Chang E-Y, Huang G-W. Analysis of Trapping Effect on Large-Signal Characteristics of GaN HEMTs Using X-Parameters and UV Illumination. Micromachines. 2023; 14(5):1011. https://doi.org/10.3390/mi14051011
Chicago/Turabian StyleChen, Kun-Ming, Chuang-Ju Lin, Chia-Wei Chuang, Hsuan-Cheng Pai, Edward-Yi Chang, and Guo-Wei Huang. 2023. "Analysis of Trapping Effect on Large-Signal Characteristics of GaN HEMTs Using X-Parameters and UV Illumination" Micromachines 14, no. 5: 1011. https://doi.org/10.3390/mi14051011
APA StyleChen, K. -M., Lin, C. -J., Chuang, C. -W., Pai, H. -C., Chang, E. -Y., & Huang, G. -W. (2023). Analysis of Trapping Effect on Large-Signal Characteristics of GaN HEMTs Using X-Parameters and UV Illumination. Micromachines, 14(5), 1011. https://doi.org/10.3390/mi14051011