Editorial for the Special Issue on Quantum Dots Frontiers
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le, T.; Xu, R.; Yang, L.; Xie, Y. Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples. Micromachines 2022, 13, 1864. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Li, Y.; Li, B.; Wang, G. An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm. Micromachines 2022, 13, 276. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Q.; Li, D.; Yang, H.; Bai, X.; Li, S.; Liu, P.; Sun, X. Red and Green Quantum Dot Color Filter for Full-Color Micro-LED Arrays. Micromachines 2022, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, K.; Hao, J.; Wu, D.; Qin, J.; Dong, D.; Deng, J.; Li, Y.; Chen, Y.; Cao, W. High Efficiency and Color Rendering Quantum Dots White Light Emitting Diodes Optimized by Luminescent Microspheres Incorporating. Nanophotonics 2016, 5, 565–572. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.; Kwon, O.; Lee, H. Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency Than Rigid Devices. Micromachines 2022, 13, 269. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Bak, E.; Ju, H.M.; Shin, Y.M.; Choi, M.J. Zinc Carboxylate Surface Passivation for Enhanced Optical Properties of In(Zn)P Colloidal Quantum Dots. Micromachines 2022, 13, 1775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Duan, X.; Tan, Y.; Liu, H.; Hao, J.; Chen, W.; Liu, P.; Wang, K.; Yang, X.; Xu, W.; et al. Organic-Phase Synthesis of Blue Emission Copper Nanoparticles for Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 3967–3972. [Google Scholar] [CrossRef]
- Ye, T.; Jia, S.; Wang, Z.; Cai, R.; Yang, H.; Zhao, F.; Tan, Y.; Sun, X.; Wu, D.; Wang, K. Fabrication of Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Via Inkjet Printing. Micromachines 2022, 13, 983. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Duan, Y.; Qiu, M.; An, H.; Peng, Z. Performance Enhancement of Perovskite Quantum Dot Light-Emitting Diodes Via Management of Hole Injection. Micromachines 2022, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhao, W.; Duan, W.; Chen, G.; Fan, B.; Zhang, X. Temperature-Dependent Optical Properties of Perovskite Quantum Dots with Mixed-a-Cations. Micromachines 2022, 13, 457. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, P.; Chen, D.; Shi, T.; Qu, X.; Chen, L.; Wu, T.; Ke, J.; Xiong, K.; Li, M.; et al. A near-Infrared Colloidal Quantum Dot Imager with Monolithically Integrated Readout Circuitry. Nat. Electron. 2022, 5, 443–451. [Google Scholar] [CrossRef]
- Pejovic, V.; Lee, J.; Georgitzikis, E.; Li, Y.; Kim, J.H.; Lieberman, I.; Malinowski, P.E.; Heremans, P.; Cheyns, D. Thin-Film Photodetector Optimization for High-Performance Short-Wavelength Infrared Imaging. IEEE Electron Device Lett. 2021, 42, 1196–1199. [Google Scholar] [CrossRef]
- Pejovic, V.; Georgitzikis, E.; Lee, J.; Lieberman, I.; Cheyns, D.; Heremans, P.; Malinowski, P.E. Infrared Colloidal Quantum Dot Image Sensors. IEEE Trans. Electron Devices 2022, 69, 2840–2850. [Google Scholar] [CrossRef]
- Chen, W.; Guo, R.; Tang, H.; Wienhold, K.S.; Li, N.; Jiang, Z.; Tang, J.; Jiang, X.; Kreuzer, L.P.; Liu, H.; et al. Operando Structure Degradation Study of PbS Quantum Dot Solar Cells. Energ. Environ. Sci. 2021, 14, 3420–3429. [Google Scholar] [CrossRef]
- Vafaie, M.; Fan, J.Z.; Morteza Najarian, A.; Ouellette, O.; Sagar, L.K.; Bertens, K.; Sun, B.; García de Arquer, F.P.; Sargent, E.H. Colloidal Quantum Dot Photodetectors with 10-ns Response Time and 80% Quantum Efficiency at 1550 nm. Matter 2021, 4, 1042–1053. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, W.; Zhang, P.; Liu, S.; Wang, K.; Yang, X.; Tang, H.; Lian, L.; He, J.; Liu, X.; et al. Facet Control for Trap-State Suppression in Colloidal Quantum Dot Solids. Adv. Funct. Mater. 2020, 30, 2000594. [Google Scholar] [CrossRef]
- Halim, N.D.; Zaini, M.S.; Talib, Z.A.; Liew, J.Y.C.; Kamarudin, M.A. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence. Micromachines 2022, 13, 443. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Hao, J. Editorial for the Special Issue on Quantum Dots Frontiers. Micromachines 2023, 14, 1026. https://doi.org/10.3390/mi14051026
Chen W, Hao J. Editorial for the Special Issue on Quantum Dots Frontiers. Micromachines. 2023; 14(5):1026. https://doi.org/10.3390/mi14051026
Chicago/Turabian StyleChen, Wei, and Junjie Hao. 2023. "Editorial for the Special Issue on Quantum Dots Frontiers" Micromachines 14, no. 5: 1026. https://doi.org/10.3390/mi14051026
APA StyleChen, W., & Hao, J. (2023). Editorial for the Special Issue on Quantum Dots Frontiers. Micromachines, 14(5), 1026. https://doi.org/10.3390/mi14051026