Parameter Identification of Model for Piezoelectric Actuators
Abstract
:1. Introduction
2. Hammerstein Model
3. Particle Swarm Genetic Hybrid Parameter Identification Method
3.1. Parameter Identification of Static Nonlinear Section
3.2. Parameter Identification of Dynamic Linear Section
4. Modeling Based on G-Pmix Algorithm
4.1. Experiment Equipment
4.2. Experiments of Static Nonlinear Section
4.3. Experiments of Dynamic Linear Section
5. Model Verification
5.1. Model Fitting Experiment
5.2. Feed-Forward and Feedback Control Experiment
5.2.1. Feed-Forward Control
5.2.2. Feedback Control
5.2.3. Signal Tracking Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-L.; Zhao, X.-L.; Ma, L. Adaptive control for hysteretic system with unknown control direction. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014. [Google Scholar]
- El Harti, K.; Rahmoune, M.; Sanbi, M.; Saadani, R.; Bentaleb, M.; Rahmoune, M. Finite Element Model of Vibration Control for an Exponential Functionally Graded Timoshenko Beam with Distributed Piezoelectric Sensor/Actuator. Actuators 2019, 8, 19. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, K.; Zhou, H. Integrated Design and Performance Test for Strain Type Piezoelectric Optical Deflector. Laser Optoelectron. Prog. 2017, 54, 82301. [Google Scholar] [CrossRef]
- Cao, Q.; Tan, Y. Online Optimization Method for Nonlinear Model-Predictive Control in Angular Tracking for MEMS Micromirror. Micromachines 2022, 13, 1867. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jiang, X.; Cao, K.; Li, S. Hysteresis Characteristics of Steering Mirror Driven by Piezoelectric Actuator and Its Experimental Research. Acta Opt. Sin. 2018, 38, 0814002. [Google Scholar]
- Wang, S.; Wu, X.; Zhu, W.; Li, M. Fluorescence Detection of Polycyclic Aromatic Hydrocarbons by Parallel Factor Combined with Support Vector Machine. Acta Opt. Sin. 2019, 39, 397–405. [Google Scholar]
- Zhao, J.; Mu, G.; Dong, H.; Sun, T.; Grattan, K.T.V. Study of the Velocity and Direction of Piezoelectric Robot Driven by Traveling Waves. IEEE Trans. Ind. Electron. 2022, 70, 9260–9269. [Google Scholar] [CrossRef]
- Mu, G.; Zhao, J.; Dong, H.; Wu, J.; Grattan, K.T.V.; Sun, T. Structural parameter study of dual transducers-type ultrasonic levitation-based transportation system. Smart Mater. Struct. 2021, 30, 045009. [Google Scholar] [CrossRef]
- Wu, J.; Niu, J.; Liu, Y.; Rong, X.; Song, R.; Dong, H.; Zhao, J.; Li, Y. Development of a Self-Moving Ultrasonic Actuator with High Carrying/Towing Capability Driven by Longitudinal Traveling Wave. IEEE-ASME Trans. 2022, 28, 267–279. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Li, J.; Zhang, S.; Li, K. Displacement Linearity Improving Method of Stepping Piezoelectric Platform Based on Leg Wagging Mechanism. IEEE Trans. 2022, 69, 6429–6432. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Yang, L.-X.; Guo, L.-D.; Sun, L.-N. Adaptive Output Feedback Control for Piezoactuator-driven Stage. Acta Autom. Sin. 2012, 38, 1550. [Google Scholar] [CrossRef]
- Xue, G.; Bai, H.; Li, T. Numerical Solving Method for Jiles-Atherton Model and Influence Analysis of the Initial Magnetic Field on Hysteresis. Mathematics 2022, 10, 4431. [Google Scholar] [CrossRef]
- Wang, S.-X. Study on Multi-requirement Points Vehicle Scheduling Model and Its Swarm Mix Algorithm. Acta Autom. Sin. 2008, 34, 102–104. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Chen, Z. A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl-Ishlinskii model. Sens. Actuators A Phys. 2020, 12, 112431. [Google Scholar] [CrossRef]
- Ang, W.T.; Khosla, P.K.; Riviere, C.N. Riviere. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectorytracking applications. IEEE/ASME Trans. Mechatron. 2007, 12, 134–142. [Google Scholar] [CrossRef]
- Delibas, B.; Arockiarajan, A.; Seemann, W. A nonlinear model of piezoelectric polcrystalline ceramics under quasi-static electromechanical loading. J. Mater. Sci. Mater. Electron 2005, 16, 507–515. [Google Scholar] [CrossRef]
- Wong, P.K.; Xu, Q.; Vong, C.M.; Wong, H.C. Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine. IEEE Trans. Ind. Electron. 2011, 59, 1988–2001. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, J.-l.; Chen, B.-y. Solutions of Symmetries for Piezoelectric Stack Actuators. Appl. Math. Mech. 2016, 37, 778–790. [Google Scholar]
- Yang, L.; Zhao, Z.; Zang, Y.; Li, D. Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model. Micromachines 2022, 13, 42. [Google Scholar] [CrossRef]
- Tao, Y.-D.; Li, H.-X.; Zhu, L.-M. Rate-dependent hysteresis modeling and compensation of piezoelectric actuators using Gaussian process. Sens. Actuators A Phys. 2019, 8, 295. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Peng, T.; Cui, Y.; Ma, J. Performance of Closed-Loop Correction with Hysteresis Compensation for Unimorph Deformable Mirror. Acta Opt. Sin. 2019, 39, 0522001. [Google Scholar] [CrossRef]
- Sabarianand, D.V.; Karthikeyan, P.; Muthuramalingam, T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 2020, 7, 106634. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, X.-m. A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Adv. 2019, 9, 040702. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, X. Nonlinear Hysteresis Modeling of Piezoelectric Actuators Using a Generalized Bouc-Wen Model. Micromachines 2019, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, S.; Wang, X. Source Optimization Using Particle Swarm Optimization Algorithm in Optical Lithography. Acta Opt. Sin. 2015, 35, 0422002. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, Y.; Gong, D.; Sun, X. Quantum particle swarm algorithm for Many-objective optimization problem. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014. [Google Scholar]
- Zhang, D.; Liu, W.; Wang, A.; Jin, H. Parameter Optimization for SVR Based on Genetic Algorithm and Simplex Method. In Proceedings of the 2010 Chinese Conference on Pattern Recognition (CCPR), Chongqing, China, 21–23 October 2010. [Google Scholar]
- Shi, G.; Wu, F.; Zhang, L.; Zhang, S.; Guo, C. An Airborne Multi-Sensor Task Allocation Method Based on Improved Particle Swarm Optimization Algorithm. Xibei Gongye Daxue Xuebao/J. Northwestern Polytech. Univ. 2018, 36, 722–727. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y. Design of Radar Orthogonal Waveform Based on Hybrid Genetic Chicken Swarm Optimization Algorithm. Laser Optoelectron. Prog. 2018, 55, 80702. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Y.; Duan, H.; Han, J. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling. Micromachines 2021, 12, 1325. [Google Scholar] [CrossRef]
- Feng, Y. Hysteretic Nolinearity Modeling and Control of Micro-Positioning Stage Driven by Piezoelectric Actuators. Master’s Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Yu, X.; Gu, H.; Yu, X. Flexible job-shop scheduling study based on multi-swarm hybrid particle swarm arithmetic. In Proceedings of the 2010 International Conference on Future Information Technology and Management Engineering, Changzhou, China, 9–10 October 2010. [Google Scholar]
- Guo, W.-Z.; Chen, G.-L.; Xiong, N.; Peng, S.-J. Hybrid Particle Swarm Optimization Algorithm for VLSI Circuit Partitioning. J. Softw. 2011, 22, 833–842. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Cui, G. Research on particle filtering based on genetic algorithm. In Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010. [Google Scholar]
- Song, J.; Zhang, A.; Yang, L. Trajectory tracking control of micro positioning platform based on dynamic sliding mode. J. Shanghai Univ. Eng. Sci. 2022, 36, 261–266. [Google Scholar]
Parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | 4000 | 50 | 4 | 1 | 1 | 4 | 0.4 | 0.9 | 0.2 | 0.2 |
Parameter | G-Pmix | PSO | GA |
---|---|---|---|
0.304225 | 0.262017 | 0.132514 | |
0.675313 | 0.675520 | 0.409838 | |
0.497724 | 0.368105 | 1.048550 | |
1.045814 | 1.048355 | 0.947412 | |
Minimum fitness | 0.029423 | 0.031505 | 0.288188 |
Parameter | G-Pmix | GA | PSO |
---|---|---|---|
267,700 | 327,100 | 228,900 | |
510.1069 | 683.914 | 386.7 | |
255,700 | 284,790 | 225,200 |
Signal | G-Pmix | PSO | GA |
---|---|---|---|
10 | 0.0617/0.0284 | 0.1134/0.0601 | 0.1910/0.0865 |
20 | 0.1306/0.0775 | 0.1781/0.1047 | 0.2463/0.1531 |
30 | 0.0434/0.0192 | 0.0688/0.0345 | 0.1000/0.0457 |
40 | 0.0336/0.0141 | 0.0706/0.0413 | 0.0791/0.0515 |
50 | 0.1547/0.0232 | 0.0684/0.0399 | 0.1547/0.1056 |
Damped sine wave | 0.1784/0.1501 | 0.2301/0.1868 | 0.2451/0.2553 |
Mean of / | 0.0823/0.0519 | 0.1216/0.0779 | 0.1694/0.1163 |
Parameters | ||||
---|---|---|---|---|
Value | 0.304225 | 0.675313 | 0.497724 | 1.045814 |
Signal | G-Pmix | G-Pmix | PSO | PSO |
---|---|---|---|---|
Ramp | 2.4739 × 10−4 | 0.0011 | 2.5372 × 10−4 | 0.0011 |
Damped sine wave | 1.2311 × 10−5 | 9.8599 × 10−4 | 1.3309 × 10−5 | 0.0010 |
0.0078 | 0.0053 | 0.0081 | 0.0055 | |
0.0539 | 0.0368 | 0.0564 | 0.0385 | |
0.1134 | 0.0763 | 0.1187 | 0.0798 | |
Complex frequency | 0.3375 | 0.0910 | 0.3512 | 0.0948 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Dong, J.; Guo, S.; Tan, L.; Yu, S. Parameter Identification of Model for Piezoelectric Actuators. Micromachines 2023, 14, 1050. https://doi.org/10.3390/mi14051050
Liu D, Dong J, Guo S, Tan L, Yu S. Parameter Identification of Model for Piezoelectric Actuators. Micromachines. 2023; 14(5):1050. https://doi.org/10.3390/mi14051050
Chicago/Turabian StyleLiu, Dongmei, Jingqu Dong, Shuai Guo, Li Tan, and Shuyou Yu. 2023. "Parameter Identification of Model for Piezoelectric Actuators" Micromachines 14, no. 5: 1050. https://doi.org/10.3390/mi14051050
APA StyleLiu, D., Dong, J., Guo, S., Tan, L., & Yu, S. (2023). Parameter Identification of Model for Piezoelectric Actuators. Micromachines, 14(5), 1050. https://doi.org/10.3390/mi14051050