Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanocrystalline ZnO
- (1)
- A total of 50 g of commercial ZnO (ACS Reagent, ≥99.0%) was placed in a 3 L beaker, and 1.75 L of deionized water was added to it. The resulting suspension was stirred at 400 rpm using an overhead stirrer at a temperature of 22–25 °C for 30 min to increase the hydration of the surface of the ZnO particles and enhance their reactivity.
- (2)
- Then, 500 g of NH4HCO3 (BioUltra, ≥99.5%) was poured into a ZnO suspension, which was accompanied by foaming and cooling of the reaction mixture by 10–15 °C. Stirring was continued for 90 min, after which the resulting precipitate was sedimented and washed three times with deionized water by decantation. The precipitate obtained was marked as “ZnO-Prec(1)”.
- (3)
- The washed precipitate ZnO-Prec(1) was again suspended in 1 L of deionized water; the resulting suspension was heated up to 90 °C until no more gas evolved. After cooling and sedimenting, the precipitate was washed three times with deionized water, separated on a Buchner funnel, and washed with additional water and ethanol. The precipitate obtained was marked as “ZnO-Prec(2)”.
- (4)
- The ZnO-Prec(2) precipitate (and samples of ZnO-Prec(1) for further characterization) was dried at a temperature of 70 °C in air overnight and then annealed at a temperature of 300 °C in air for 24 h. The yield of nanocrystalline ZnO was approximately 86%.
2.2. Characterization of Samples
2.3. Gas-Phase Photo-Oxidation of Acetone
3. Results
3.1. Phase Composition
3.2. Morphology of Synthesized Materials
3.3. Optical Properties
3.4. Elemental Composition and Charge States of Atoms
3.5. Gas-Phase Photo-Oxidation Acetone over ZnO
3.6. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özgür, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Šetka, M.; Claros, M.; Chmela, O.; Vallejos, S. Photoactivated materials and sensors for NO2 monitoring. J. Mater. Chem. 2021, 9, 16804–16827. [Google Scholar] [CrossRef]
- Chizhov, A.; Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials 2021, 11, 892. [Google Scholar] [CrossRef] [PubMed]
- Kegel, J.; Povey, I.M.; Pemble, M.E. Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy 2018, 54, 409–428. [Google Scholar] [CrossRef]
- Zhu, S.; Li, X.; Pan, Z.; Jiao, X.; Zheng, K.; Li, L.; Shao, W.; Zu, X.; Hu, J.; Zhu, J.; et al. Efficient photo-oxidation of Methane to Liquid Oxygenates over ZnO Nanosheets at Atmospheric Pressure and near Room Temperature. Nano Lett. 2021, 21, 4122–4128. [Google Scholar] [CrossRef] [PubMed]
- Ranjbari, A.; Demeestere, K.; Kim, K.H.; Heynderickx, P.M. Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study. Appl. Catal. B Environ. 2023, 324, 122265. [Google Scholar] [CrossRef]
- Khashij, M.; Salmani, M.H.; Dalvand, A.; Fallahzadeh, H.; Haghirosadat, F.; Mokhtari, M. ZnO-based nanocomposites for removal of lead (Pb2+) from water/wastewater: A review. Pigment. Resin Technol. 2022. [Google Scholar] [CrossRef]
- Jangwan, J.; Kumar, S.S.; Kumar, V.; Kumar, A.; Kumar, D. A review on the capability of zinc oxide and iron oxides nanomaterials, as a water decontaminating agent: Adsorption and photocatalysis. Appl. Water Sci. 2022, 12, 46. [Google Scholar] [CrossRef]
- Le Pivert, M.; Kerivel, O.; Zerelli, B.; Leprince-Wang, Y. ZnO nanostructures based innovative photocatalytic road for air purification. J. Clean. Prod. 2021, 318, 128447. [Google Scholar] [CrossRef]
- Saadat Niavol, S.; Bagheri Khatibani, A.; Imani, S.; Milani Moghaddam, H. Ethylene glycol-sensing properties of hydrothermally grown feather-like ZnO nanopowder with abundant oxygen vacancies. J. Mater. Res. 2023, 38, 1211–1223. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Choi, J.G.; Yuwono, J.A.; Kiy, A.; Kumar, P.V.; Murugappan, K.; Lee, W.J.; Kluth, P.; Nisbet, D.R.; Tran-Phu, T.; et al. Oxygen Vacancies Engineering in Thick Semiconductor Films via Deep Ultraviolet Photoactivation for Selective and Sensitive Gas Sensing. Adv. Electron. Mater. 2023, 9, 2200905. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Astafiev, A.; Rumyantseva, M. Photoactivated Processes on the Surface of Metal Oxides and Gas Sensitivity to Oxygen. Sensors 2023, 23, 1055. [Google Scholar] [CrossRef] [PubMed]
- Ristic, M.; Music, S.; Ivanda, M.; Popovic, S. Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 2005, 397, L1–L4. [Google Scholar] [CrossRef]
- Salim, S.M.; Izriq, R.; Almaky, M.M.; Al-Abbassi, A.A. Synthesis and characterization of ZnO nanoparticles for the production of biodiesel by transesterification: Kinetic and thermodynamic studies. Fuel 2022, 321, 124135. [Google Scholar] [CrossRef]
- Haq, S.; Ali, M.; Mezni, A.; Hedfi, A.; Rehman, W.; Sarwar, G.; Zain-Ul-abdin; Din, S.; Rehman, F.; Abbasi, S.; et al. Fabrication and characterization of zinc oxide nanoparticles for photocatalytic application. Dig. J. Nanomater. Biostructures 2022, 17, 499–505. [Google Scholar] [CrossRef]
- Jiang, B.; Lu, J.; Han, W.; Sun, Y.; Wang, Y.; Cheng, P.; Zhang, H.; Wang, C.; Lu, G. Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor. Sens. Actuators B Chem. 2022, 357, 131333. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Wang, C.; Yang, H.; Xue, X. Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance. Vacuum 2022, 199, 110891. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Zhao, B.; Bao, X. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J. Cryst. Growth 2004, 263, 447–453. [Google Scholar] [CrossRef]
- Labuayai, S.; Promarak, V.; Maensiri, S. Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl. Phys. A 2009, 94, 755–761. [Google Scholar] [CrossRef]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar] [CrossRef]
- Lattanzi, P.; Meneghini, C.; Giudici, G.D.; Podda, F. Uptake of Pb by hydrozincite, Zn5(CO3)2(OH)6 Implications for remediation. J. Hazard. Mater. 2010, 177, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Tzompantzi, F.; Tzompantzi-Flores, C.; Portillo-Velez, N.; Castillo-Rodriguez, J.; Gomez, R.; Perez Hernandez, R.; Santolalla-Vargas, C. Preparation and characterization of the polycrystalline material Zn5(OH)6(CO3)2. Determination of the active species in oxide-reduction processes. Fuel 2020, 281, 118471. [Google Scholar] [CrossRef]
- Wahab, R.; Ansari, S.; Kim, Y.S.; Dar, M.; Shin, H.S. Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J. Alloys Compd. 2008, 461, 66–71. [Google Scholar] [CrossRef]
- Neves, M.C.; Trindade, T.; Timmons, A.M.; Pedrosa de Jesus, J.D. Synthetic hollow zinc oxide microparticles. Mater. Res. Bull. 2001, 36, 1099–1108. [Google Scholar] [CrossRef]
- Castellano, M.; Matijevic, E. Uniform colloidal zinc compounds of various morphologies. Chem. Mater. 1989, 1, 78–82. [Google Scholar] [CrossRef]
- Bitenc, M.; Marinšek, M.; Crnjak Orel, Z. Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles. J. Eur. Ceram. Soc. 2008, 28, 2915–2921. [Google Scholar] [CrossRef]
- Yan, C.; Xue, D. Morphosynthesis of Hierarchical Hydrozincite with Tunable Surface Architectures and Hollow Zinc Oxide. J. Phys. Chem. B 2006, 110, 11076–11080. [Google Scholar] [CrossRef]
- Song, H.; Yang, H.; Ma, X. A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. J. Alloys Compd. 2013, 578, 272–278. [Google Scholar] [CrossRef]
- Han, W.; Yang, K.; Li, D.; Zhang, Z.; Ma, J.; Ni, S.; Yang, X. The fabrication and characterization of Zn5(OH)6(CO3)2 as a new anode material for lithium ion batteries. Mater. Lett. 2016, 164, 148–151. [Google Scholar] [CrossRef]
- Han, Y.X.; Ding, Y.Z.; Yin, W.Z. Preparation of homogeneous ZnO nanoparticles via precipitation-pyrolysis with Zn5(CO3)2(OH)6 as precursor. Trans. Nonferrous Met. Soc. China 2006, 16, 1205–1212. [Google Scholar] [CrossRef]
- Music, S.; Saric, A.; Popovic, S. Dependence of the microstructural properties of ZnO particles on their synthesis. J. Alloys Compd. 2008, 448, 277–283. [Google Scholar] [CrossRef]
- Moezzi, A.; Cortie, M.; Dowd, A.; McDonagh, A. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate. J. Nanoparticle Res. 2014, 16, 2344. [Google Scholar] [CrossRef]
- Yanase, I.; Konno, S.; Kobayashi, H. Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles. Adv. Powder Technol. 2018, 29, 1239–1245. [Google Scholar] [CrossRef]
- Turianicová, E.; Kaňuchová, M.; Zorkovská, A.; Holub, M.; Bujňáková, Z.; Dutková, E.; Baláž, M.; Findoráková, L.; Balintová, M.; Obut, A. CO2 utilization for fast preparation of nanocrystalline hydrozincite. J. CO2 Util. 2016, 16, 328–335. [Google Scholar] [CrossRef]
- Il’in, A.; Smirnov, N.; Rumyantsev, R.; Ivanova, T.; Il’in, A. Mechanochemical synthesis of zinc oxides with the use of liquid and gaseous media. Russ. J. Appl. Chem. 2014, 87, 1412–1416. [Google Scholar] [CrossRef]
- Kowalik, P.; Konkol, M.; Antoniak-Jurak, K.; Próchniak, W.; Wiercioch, P.; Rawski, M.; Borowiecki, T. Structure and morphology transformation of ZnO by carbonation and thermal treatment. Mater. Res. Bull. 2015, 65, 149–156. [Google Scholar] [CrossRef]
- Morgott, D.A. Patty’s Industrial Hygiene and Toxicology; John Wiley & Sons, Inc.: New York, NY, USA, 1993; Volume 2, chapter Acetone. [Google Scholar]
- Dick, R.; Setzer, J.; Taylor, B.; Shukla, R. Neurobehavioural effects of short duration exposures to acetone and methyl ethyl ketone. Occup. Environ. Med. 1989, 46, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, S.; Qu, F.; Gong, S.; Wang, C.; Qiu, L.; Yang, M.; Cheng, W. High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. J. Alloys Compd. 2019, 797, 246–252. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Olanrewaju Alade, I.; Qamar, M.; Akbar, S. Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review. Chem. Asian J. 2021, 16, 1519–1538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cen, Y.; Du, Y.; Ruan, S. Enhanced acetone sensing characteristics of ZnO/graphene composites. Sensors 2016, 16, 1876. [Google Scholar] [CrossRef] [PubMed]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.; Wong, Y.C.; Wong, Y.H. Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Xu, F.; HO, H.P. Light-Activated Metal Oxide Gas Sensors: A Review. Micromachines 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: From metal oxides to 2D materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.J.; Cho, H.D.; Kim, S.G.; Kim, M.D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sens. Actuators B Chem. 2023, 378, 133140. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Vidyasagar, D.; Bak, N.h.; Jung, N.; Kim, Y.H.; Lee, J.H.; Kim, S.G.; Kim, M.D. UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots. Nano Res. 2023. [Google Scholar] [CrossRef]
- Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734. [Google Scholar] [CrossRef]
- Kang, S.; Park, D.h.; Hwang, J. Hierarchical ZnO nano-spines grown on a carbon fiber seed layer for efficient VOC removal and airborne virus and bacteria inactivation. J. Hazard. Mater. 2022, 424, 127262. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Lin, B.; Chen, Z.; Xu, X.; Pan, M. Ti3C2TX MXene supported ZnO nanocomposites with highly efficient photocatalytic performance for degradation of VOCs. Diam. Relat. Mater. 2023, 133, 109763. [Google Scholar] [CrossRef]
- Atanasova, G.; Dilova, T.; Dikovska, A.; Nikov, R.; Nedyalkov, N. Acetone-sensing properties of ZnO–noble-metals composite nano-structures and their improvement by light irradiation. Thin Solid Films 2022, 750, 139198. [Google Scholar] [CrossRef]
- Cui, J.; Pan, G.; Yang, X.; Zhu, M.; Huang, C.; Qi, J. Enhanced acetone sensing performance of CeO2-ZnO at low temperature and its photo-excitation effect. Mater. Sci. Semicond. Process. 2020, 118, 105221. [Google Scholar] [CrossRef]
- Li, J.; Gu, D.; Yang, Y.; Du, H.; Li, X. UV Light Activated SnO2/ZnO Nanofibers for Gas Sensing at Room Temperature. Front. Mater. 2019, 6, 158. [Google Scholar] [CrossRef]
- Ivanishcheva, A.P.; Sysoev, V.V.; Abdullin, K.A.; Nesterenko, A.V.; Khubezhov, S.A.; Petrov, V.V. The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods. Chemosensors 2023, 11, 200. [Google Scholar] [CrossRef]
- Xu, W.; Raftery, D. In Situ Solid-State Nuclear Magnetic Resonance Studies of Acetone Photocatalytic Oxidation on Titanium Oxide Surfaces. J. Catal. 2001, 204, 110–117. [Google Scholar] [CrossRef]
- El-Maazawi, M.; Finken, A.; Nair, A.; Grassian, V. Adsorption and Photocatalytic Oxidation of Acetone on TiO2: An in Situ Transmission FT-IR Study. J. Catal. 2000, 191, 138–146. [Google Scholar] [CrossRef]
- Muraca, A.R.; Kershis, M.D.; Camillone, N.; White, M.G. Ultrafast dynamics of acetone photo-oxidation on TiO2(110). J. Chem. Phys. 2019, 151, 161103. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y.; Shi, W.; Zhao, L.; Zhao, X.; Fang, P.; Zheng, F.; Wang, S. Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO. Chem. Eng. J. 2012, 213, 218–224. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors 2022, 10, 147. [Google Scholar] [CrossRef]
- Hales, M.C.; Frost, R.L. Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron 2007, 26, 4955–4962. [Google Scholar] [CrossRef]
- Šćepanović, M.; Grujić-Brojčin, M.; Vojisavljević, K.; Bernik, S.; Srećković, T. Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 2010, 41, 914–921. [Google Scholar] [CrossRef]
- Dobrydnev, S.; Molodtsova, M.Y.; Kizim, N. Synthesis and study of basic zinc carbonate. Russ. J. Inorg. Chem. 2014, 59, 798–800. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO nanowires: A review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
- Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A. PL study of oxygen defect formation in ZnO nanorods. Microelectron. J. 2009, 40, 296–298. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, C.; Li, W.; Qin, G.; Ruan, H.; Tan, M. The formation mechanism and stability of p-type N-doped Zn-rich ZnO films. J. Mater. Sci. Mater. Electron. 2016, 27, 5251–5258. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Chai, X.; Hu, Z.; Deng, Y. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature. J. Phys. Chem. C 2010, 114, 1293–1298. [Google Scholar] [CrossRef]
- Wang, X.; Cai, W.; Lin, Y.; Wang, G.; Liang, C. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 2010, 20, 8582–8590. [Google Scholar] [CrossRef]
- Li, H.; Zhao, K.; Tian, S.; Zeng, D.; Pang, A.; Wang, X.; Xie, C. A novel exposed facet dependent topological transformation mechanism from hydrozincite microspheres into hierarchical mesoporous ZnO structures. Mater. Lett. 2017, 202, 142–145. [Google Scholar] [CrossRef]
- Abd-Rabboh, H.S.M.; Eissa, M.; Mohamed, S.K.; Hamdy, M.S. Synthesis of ZnO by thermal decomposition of different precursors: Photocatalytic performance under UV and visible light illumination. Mater. Res. Express 2019, 6, 055911. [Google Scholar] [CrossRef]
- Cho, S.; Jang, J.W.; Lee, J.S.; Lee, K.H. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis. CrystEngComm 2010, 12, 3929–3935. [Google Scholar] [CrossRef]
- Cerrato, E.; Privitera, A.; Chiesa, M.; Salvadori, E.; Paganini, M.C. Nitrogen-Doped Zinc Oxide for Photo-Driven Molecular Hydrogen Production. Int. J. Mol. Sci. 2022, 23, 5222. [Google Scholar] [CrossRef]
BE Position, eV | Content, at.% | ||||||
---|---|---|---|---|---|---|---|
O1s | C1s | N1s | Zn2p | O1s | C1s | N1s | |
1021.3(I) | 530.0(I) | 284.8(I) | 399.9 | 34.5(I) | 23.7(I) | 13.1(I) | 0.1 |
1022.1(II) | 530.8(II) | 286.2(II) | 3.9(II) | 8.8(II) | 2.6(II) | ||
531.8(III) | 288.8(III) | 10.4(III) | 2.9(III) | ||||
38.4 | 42.9 | 18.6 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. Micromachines 2023, 14, 912. https://doi.org/10.3390/mi14050912
Chizhov A, Kutukov P, Gulin A, Astafiev A, Rumyantseva M. Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. Micromachines. 2023; 14(5):912. https://doi.org/10.3390/mi14050912
Chicago/Turabian StyleChizhov, Artem, Pavel Kutukov, Alexander Gulin, Artyom Astafiev, and Marina Rumyantseva. 2023. "Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor" Micromachines 14, no. 5: 912. https://doi.org/10.3390/mi14050912
APA StyleChizhov, A., Kutukov, P., Gulin, A., Astafiev, A., & Rumyantseva, M. (2023). Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. Micromachines, 14(5), 912. https://doi.org/10.3390/mi14050912