The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station
Abstract
:1. Introduction
Design of an Extraction Cartridge for Use in Microgravity
2. Materials and Methods
2.1. Using Magnetic Coupling to Extract Nucleic Acids Inside an Enclosed Cartridge
2.2. Zika Virus and Urine Specimens
2.3. RNA Isolation for Pathogen Detection
2.4. DNA Isolation from Human Whole Blood
2.5. Demonstrating That the VSPP’s Mechanical Operation Is Gravity-Independent
2.6. Impact of 1 g and Low g on Various Test Fluids
2.7. Testing for Generation and Contamination from Satellite Droplets
2.8. Optimizing the Fluidic Control of Reagent Wells in Microgravity
3. Results
3.1. Simultaneous Sample Preparation with Magnetic Coupling
3.2. The VSPP Operation Is As Reproducible As the Manual Operation
3.3. The VSPP Can Consistently Process a Wide Range of Target Concentrations
3.4. Demonstrate DNA Isolation from Human Whole Blood
3.5. Gravity-Independent Mechanical Operation
3.6. Drop Tower Testing
3.6.1. Extraction Well Geometry and Design
3.6.2. Extraction Tip Insertion and Withdrawal Test
3.6.3. Microgravity Cartridge Design and Prototype
3.6.4. Cartridge and Reagent Wells 3D Printed and Tested
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Duc, M.T.; Venkateswaran, K.; Sumner, R.; Pierson, D. Characterization and Monitoring of Microbes in the International Space Station Drinking Water. In Proceedings of the Internationsl Conference on Environmental Systems, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Castro, V.A.; Thrasher, A.N.; Healy, M.; Ott, C.M.; Pierson, D.L. Microbial characterization during the early habitation of the International Space Station. Microb. Ecol. 2004, 47, 119–126. [Google Scholar] [CrossRef]
- Van Houdt, R.; Mijnendonckx, K.; Leys, N. Microbial contamination monitoring and control during human space missions. Planet. Space Sci. 2012, 60, 115–120. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Roberts, M.; Castro, S.; Oubre, C.; Makimura, K.; Leys, N.; Grohmann, E.; Sugita, T.; Ichijo, T.; Nasu, M. Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ. 2014, 29, 250–260. [Google Scholar] [CrossRef]
- Checinska Sielaff, A.; Urbaniak, C.; Mohan, G.B.M.; Stepanov, V.G.; Tran, Q.; Wood, J.M.; Minich, J.; McDonald, D.; Mayer, T.; Knight, R.; et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 2019, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Ichijo, T.; Shimazu, T.; Nasu, M. Microbial Monitoring in the International Space Station and Its Application on Earth. Biol. Pharm. Bull. 2020, 43, 254–257. [Google Scholar] [CrossRef]
- Hummerick, M.E.; Khodadad, C.L.M.; Dixit, A.R.; Spencer, L.E.; Maldonado-Vasquez, G.J.; Gooden, J.L.; Spern, C.J.; Fischer, J.A.; Dufour, N.; Wheeler, R.M.; et al. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life 2021, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Khodadad, C.L.M.; Oubre, C.M.; Castro, V.A.; Flint, S.M.; Roman, M.C.; Ott, C.M.; Spern, C.J.; Hummerick, M.E.; Maldonado Vazquez, G.J.; Birmele, M.N.; et al. A Microbial Monitoring System Demonstrated on the International Space Station Provides a Successful Platform for Detection of Targeted Microorganisms. Life 2021, 11, 492. [Google Scholar] [CrossRef]
- Urbaniak, C.; Morrison, M.D.; Thissen, J.B.; Karouia, F.; Smith, D.J.; Mehta, S.; Jaing, C.; Venkateswaran, K. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 2022, 10, 100. [Google Scholar] [CrossRef]
- Kumar, R.K.; Singh, N.K.; Balakrishnan, S.; Parker, C.W.; Raman, K.; Venkateswaran, K. Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. Microbiome 2022, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.; Cooper, M.; Duc, M.T.L.; Vaishampayan, P.; Stam, C.; Benardini, J.N.; Scalzi, G.; Moissl-Eichinger, C.; Venkateswaran, K. Evaluation of Procedures for the Collection, Processing, and Analysis of Biomolecules from Low-Biomass Surfaces. Appl. Environ. Microbiol. 2011, 77, 2943–2953. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Steele, G.C. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into Human Exploration and Operations Mission Directorate Projects for 2016; Glenn Research Center: Cleveland, OH, USA, 2017; p. 7.
- Stahl-Rommel, S.; Jain, M.; Nguyen, H.N.; Arnold, R.R.; Aunon-Chancellor, S.M.; Sharp, G.M.; Castro, C.L.; John, K.K.; Juul, S.; Turner, D.J.; et al. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes 2021, 12, 106. [Google Scholar] [CrossRef]
- Boguraev, A.S.; Christensen, H.C.; Bonneau, A.R.; Pezza, J.A.; Nichols, N.M.; Giraldez, A.J.; Gray, M.M.; Wagner, B.M.; Aken, J.T.; Foley, K.D.; et al. Successful amplification of DNA aboard the International Space Station. npj Microgravity 2017, 3, 26. [Google Scholar] [CrossRef]
- Montague, T.G.; Almansoori, A.; Gleason, E.J.; Copeland, D.S.; Foley, K.; Kraves, S.; Alvarez Saavedra, E. Gene expression studies using a miniaturized thermal cycler system on board the International Space Station. PLoS ONE 2018, 13, e0205852. [Google Scholar] [CrossRef]
- Yeung, C.K.; Koenig, P.; Countryman, S.; Thummel, K.E.; Himmelfarb, J.; Kelly, E.J. Tissue Chips in Space—Challenges and Opportunities. Clin. Transl. Sci. 2020, 13, 8–10. [Google Scholar] [CrossRef]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kleines, M.; Schellenberg, K.; Ritter, K. Efficient Extraction of Viral DNA and Viral RNA by the Chemagic Viral DNA/RNA Kit Allows Sensitive Detection of Cytomegalovirus, Hepatitis B Virus, and Hepatitis G Virus by PCR. J. Clin. Microbiol. 2003, 41, 5273–5276. [Google Scholar] [CrossRef]
- Stormer, M.; Kleesiek, K.; Dreier, J. High-Volume Extraction of Nucleic Acids by Magnetic Bead Technology for Ultrasensitive Detection of Bacteria in Blood Components. Clin. Chem. 2007, 53, 104–110. [Google Scholar] [CrossRef]
- Yeung, S.W.; Hsing, I.M. Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens. Bioelectron. 2006, 21, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Loens, K.; Bergs, K.; Ursi, D.; Goossens, H.; Ieven, M. Evaluation of NucliSens easyMAG for Automated Nucleic Acid Extraction from Various Clinical Specimens. J. Clin. Microbiol. 2007, 45, 421–425. [Google Scholar] [CrossRef]
- Chan, K.; Coen, M.; Hardick, J.; Gaydos, C.A.; Wong, K.-Y.; Smith, C.; Wilson, S.A.; Vayugundla, S.P.; Wong, S. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection. PLoS ONE 2016, 11, e0158502. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Weaver, S.C.; Wong, P.-Y.; Lie, S.; Wang, E.; Guerbois, M.; Vayugundla, S.P.; Wong, S. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Sci. Rep. 2016, 6, 38223. [Google Scholar] [CrossRef]
- Wong, S. Diagnostics in space: Will zero gravity add weight to new advances? Expert Rev. Mol. Diagn. 2020, 20, 1–4. [Google Scholar] [CrossRef]
- Vandelannoote, K.; Buultjens, A.H.; Li, L.; Sharkey, L.K.; Herisse, M.; Pidot, S.J.; Hoang, T.; Howden, B.P.; Monk, I.R.; Seemann, T.; et al. Accessible Platform for High-Throughput COVID-19 Molecular Diagnostics and Genome Sequencing Using a Repurposed 3D Printer for RNA Extraction. ACS Biomater. Sci. Eng. 2021, 7, 4669–4676. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Wong, P.-Y.; Parikh, C.; Wong, S. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal. Biochem. 2018, 545, 4–12. [Google Scholar] [CrossRef]
- Parra, M.; Jung, J.; Boone, T.D.; Tran, L.; Blaber, E.A.; Brown, M.; Chin, M.; Chinn, T.; Cohen, J.; Doebler, R.; et al. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station. PLoS ONE 2017, 12, e0183480. [Google Scholar] [CrossRef] [PubMed]
- Oubre, C.M.; Birmele, M.N.; Castro, V.A.; Venkateswaran, K.J.; Vaishampayan, P.A.; Jones, K.U.; Singhal, A.; Johnston, A.S.; Ozbolt, T.A.; Jett, D.X.; et al. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar] [CrossRef]
- Urbaniak, C.; Wong, S.; Tighe, S.; Arumugam, A.; Liu, B.; Parker, C.W.; Wood, J.M.; Singh, N.K.; Skorupa, D.J.; Peyton, B.M.; et al. Validating an Automated Nucleic Acid Extraction Device for Omics in Space Using Whole Cell Microbial Reference Standards. Front. Microbiol. 2020, 11, 1909. [Google Scholar] [CrossRef]
- Castro-Wallace, S.L.; Chiu, C.Y.; John, K.K.; Stahl, S.E.; Rubins, K.H.; McIntyre, A.B.R.; Dworkin, J.P.; Lupisella, M.L.; Smith, D.J.; Botkin, D.J.; et al. Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Sci. Rep. 2017, 7, 18022. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Weislogel, M.; Goodman, J.; Mohler, S.; Mungin, R.; Ungar, E.; Buchli, J. Mitigation of Micro-Droplet Ejections During Open Cabin Unit Operations Aboard ISS. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- McIntyre, A.B.R.; Rizzardi, L.; Yu, A.M.; Alexander, N.; Rosen, G.L.; Botkin, D.J.; Stahl, S.E.; John, K.K.; Castro-Wallace, S.L.; McGrath, K.; et al. Nanopore sequencing in microgravity. npj Microgravity 2016, 2, 16035. [Google Scholar] [CrossRef]
- Burton, A.S.; Stahl, S.E.; John, K.K.; Jain, M.; Juul, S.; Turner, D.J.; Harrington, E.D.; Stoddart, D.; Paten, B.; Akeson, M.; et al. Off Earth Identification of Bacterial Populations Using 16S rDNA Nanopore Sequencing. Genes 2020, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Gourinat, A.-C.; O’Connor, O.; Calvez, E.; Goarant, C.; Dupont-Rouzeyrol, M. Detection of Zika Virus in Urine. Emerg. Infect. Dis. 2015, 21, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Lustig, Y.; Mendelson, E.; Paran, N.; Melamed, S.; Schwartz, E. Detection of Zika virus RNA in whole blood of imported Zika virus disease cases up to 2 months after symptom onset, Israel, December 2015 to April 2016. Eurosurveill 2016, 21, 30269. [Google Scholar] [CrossRef]
- Campos, R.D.M.; Cirne-Santos, C.; Meira, G.L.S.; Santos, L.L.R.; de Meneses, M.D.; Friedrich, J.; Jansen, S.; Ribeiro, M.S.; da Cruz, I.C.; Schmidt-Chanasit, J.; et al. Prolonged detection of Zika virus RNA in urine samples during the ongoing Zika virus epidemic in Brazil. J. Clin. Virol. 2016, 77, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Bingham, A.M.; Cone, M.; Mock, V.; Heberlein-Larson, L.; Stanek, D.; Blackmore, C.; Likos, A. Comparison of Test Results for Zika Virus RNA in Urine, Serum, and Saliva Specimens from Persons with Travel-Associated Zika Virus Disease—Florida, 2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Weislogel, M.; Chen, Y.; Collicott, S.; Bunnell, C.; Green, R.; Bohman, D. More Handheld Fluid Interface Experiments for the International Space Station (CFE-2). In Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar] [CrossRef]
- Weislogel, M.M.; Baker, J.A.; Jenson, R.M. Quasi-steady capillarity-driven flows in slender containers with interior edges. J. Fluid Mech. 2011, 685, 271–305. [Google Scholar] [CrossRef]
- Weislogel, M.M.; Graf, J.C.; Wollman, A.P.; Turner, C.C.; Cardin, K.J.T.; Torres, L.J.; Goodman, J.E.; Buchli, J.C. How advances in low-g plumbing enable space exploration. npj Microgravity 2022, 8, 16. [Google Scholar] [CrossRef]
- Griko, Y.V.; Loftus, D.J.; Stolc, V.; Peletskaya, E. Private Spaceflight: A New Landscape for Dealing with Medical Risk. Life Sci. Space Res. 2022, 33, 41–47. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, K.; Arumugam, A.; Markham, C.; Jenson, R.; Wu, H.-W.; Wong, S. The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. Micromachines 2023, 14, 937. https://doi.org/10.3390/mi14050937
Chan K, Arumugam A, Markham C, Jenson R, Wu H-W, Wong S. The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. Micromachines. 2023; 14(5):937. https://doi.org/10.3390/mi14050937
Chicago/Turabian StyleChan, Kamfai, Arunkumar Arumugam, Cole Markham, Ryan Jenson, Hao-Wei Wu, and Season Wong. 2023. "The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station" Micromachines 14, no. 5: 937. https://doi.org/10.3390/mi14050937
APA StyleChan, K., Arumugam, A., Markham, C., Jenson, R., Wu, H. -W., & Wong, S. (2023). The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. Micromachines, 14(5), 937. https://doi.org/10.3390/mi14050937