Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters
Abstract
:1. Introduction
2. Materials and Methods
2.1. NOR Logic Gate Fabrication and Testing
2.2. In Situ Gamma Radiation Experiments
3. Results
3.1. CNT Emitter Characterization
3.2. Tetrode Operation and Transistor Performance
3.3. NOR Gate Operation
3.4. In Situ Gamma Irradiation Experiments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Becker, J.A.; Shive, J.N. The transistor—A new semiconductor amplifier. Electr. Eng. 1949, 68, 215–221. [Google Scholar] [CrossRef]
- Dimitrijev, S. Analysis of gamma-radiation induced instability mechanisms in CMOS transistors. Solid-State Electron. 1989, 32, 349–353. [Google Scholar] [CrossRef]
- Kochiyama, M.; Sega, T.; Hara, K.; Arai, Y.; Miyoshi, T.; Ikegami, Y.; Terada, S.; Unno, Y.; Fukuda, K.; Okihara, M. Radiation effects in silicon-on-insulator transistors with back-gate control method fabricated with OKI Semiconductor 0.20μm FD-SOI technology. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 636, S62–S67. [Google Scholar] [CrossRef]
- Gaertner, G. Historical development and future trends of vacuum electronics. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2012, 30, 060801. [Google Scholar] [CrossRef]
- Kilby, J.S. Invention of the integrated circuit. IEEE Trans. Electron. Devices 1976, 23, 648–654. [Google Scholar] [CrossRef]
- Noyce, R.N. Semiconductor Device-and-Lead Structure, Reprint of U.S. Patent 2,981,877 (Issued April 25, 1961. Filed July 30, 1959). IEEE Solid-State Circuits Soc. Newsl. 2007, 12, 34–40. [Google Scholar] [CrossRef]
- Spindt, C.A. A Thin-Film Field-Emission Cathode. J. Appl. Phys. 1968, 39, 3504–3505. [Google Scholar] [CrossRef]
- Neidert, R.E.; Phillips, P.M.; Smith, S.T.; Spindt, C.A. Field emission triodes. IEEE Trans. Electron. Devices 1991, 38, 661–665. [Google Scholar] [CrossRef]
- Brodie, I.; Spindt, C.A. The application of thin-film field-emission cathodes to electronic tubes. Appl. Surf. Sci. 1979, 2, 149–163. [Google Scholar] [CrossRef]
- Subramanian, K.; Kang, W.P.; Davidson, J.L. A monolithic nanodiamond lateral field emission triode. Phys. Status Solidi. 2009, 206, 2074–2076. [Google Scholar] [CrossRef]
- Saito, Y.; Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, 169–182. [Google Scholar] [CrossRef]
- Ghosh, N.; Kang, W.P.; Davidson, J.L. Fabrication and implementation of nanodiamond lateral field emission diode for logic OR function. Diam. Relat. Mater. 2012, 23, 120–124. [Google Scholar] [CrossRef]
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.S.; Park, J.; Temkin, R.J. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Utsumi, T. Vacuum microelectronics: What’s new and exciting. IEEE Trans. Electron. Devices 1991, 38, 2276–2283. [Google Scholar] [CrossRef]
- Bocharov, G.S.; Eletskii, A.V. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters. Nanomaterials 2013, 3, 393–442. [Google Scholar] [CrossRef]
- Brodie, I.; Schwoebel, P.R. Vacuum microelectronic devices [and prolog]. Proc. IEEE 1994, 82, 1006–1034. [Google Scholar] [CrossRef]
- Kang, W.P.; Davidson, J.L.; Subramanian, K.; Choi, B.K.; Galloway, K.F. Nanodiamond Lateral VFEM Technology for Harsh Environments. IEEE Trans. Nucl. Sci. 2007, 54, 1061–1065. [Google Scholar] [CrossRef]
- Bower, C.; Zhu, W.; Shalom, D.; Lopez, D.; Chen, L.H.; Gammel, P.L.; Jin, S. On-chip vacuum microtriode using carbon nanotube field emitters. Appl. Phys. Lett. 2002, 80, 3820–3822. [Google Scholar] [CrossRef]
- Itoh, S. Current Status of the Spindt-type Field Emitter. In Proceedings of the 2006 International Symposium on Discharges and Electrical Insulation in Vacuum, Piscataway, NJ, USA, 25–29 September 2006; pp. 875–876. [Google Scholar]
- Calderón-Colón, X.; Geng, H.; Gao, B.; An, L.; Cao, G.; Zhou, O. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 2009, 20, 325707. [Google Scholar] [CrossRef]
- Patra, S.K.; Mohan Rao, G. Field emission current saturation of aligned carbon nanotube—Effect of density and aspect ratio. J. Appl. Phys. 2006, 100, 024319. [Google Scholar] [CrossRef]
- Guglielmotti, V.; Tamburri, E.; Orlanducci, S.; Terranova, M.L.; Rossi, M.; Notarianni, M.; Fairchild, S.B.; Maruyama, B.; Behabtu, N.; Young, C.C.; et al. Macroscopic self-standing SWCNT fibres as efficient electron emitters with very high emission current for robust cold cathodes. Carbon 2013, 52, 356–362. [Google Scholar] [CrossRef]
- Francis, S.A.; Cress, C.D.; McClory, J.W.; Moore, E.A.; Petrosky, J.C. Characterization of Radiation Damage in Carbon Nanotube Field-Effect Transistors. IEEE Trans. Nucl. Sci. 2013, 60, 4087–4093. [Google Scholar] [CrossRef]
- Gupta, S.; Weiss, B.L.; Weiner, B.R.; Pilione, L.; Badzian, A.; Morell, G. Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films. J. Appl. Phys. 2002, 92, 3311–3317. [Google Scholar] [CrossRef]
- Carter, J.; Cowen, A.; Mahadevan, R.; Stonefield, M.; Wilcenski, S. PolyMUMPs Design Handbook, 11th ed.; M. Inc.: Toronto, ON, Canada, 2005. [Google Scholar]
- Bower, C.A.; Gilchrist, K.H.; Broderick, S.; Piascik, J.R.; Stoner, B.R.; Parker, C.B.; Natarajan, S.; Wolter, S.D.; Glass, J.T. High Voltage Compatible Micromachined Vacuum Electronic Devices with Carbon Nanotube Cold Cathodes. In Proceedings of the 2006 IEEE International Vacuum Electronics Conference Held Jointly with 2006 IEEE International Vacuum Electron Sources, Monterey, CA, USA, 25–27 April 2006. [Google Scholar]
- Bower, C.A.; Gilchrist, K.H.; Piascik, J.R.; Stoner, B.R.; Natarajan, S.; Parker, C.B.; Wolter, S.D.; Glass, J.T. On-chip electron-impact ion source using carbon nanotube field emitters. Appl. Phys. Lett. 2007, 90, 124102. [Google Scholar] [CrossRef]
- Natarajan, S.; Parker, C.B.; Glass, J.T.; Piascik, J.R.; Gilchrist, K.H.; Bower, C.A.; Stoner, B.R. High voltage microelectromechanical systems platform for fully integrated, on-chip, vacuum electronic devices. Appl. Phys. Lett. 2008, 92, 24–25. [Google Scholar] [CrossRef]
- Gilchrist, K.H.; Piascik, J.R.; Stoner, B.R.; Radauscher, E.J.; Amsden, J.J.; Parker, C.B.; Glass, J.T. Platform for integrated vacuum microelectronic circuits. In Proceedings of the Vacuum Electronics Conference, IEEE International, Monterey, CA, USA, 22–24 April 2014; pp. 155–156. [Google Scholar]
- Amsden, J.J.; Herr, P.J.; Landry, D.M.W.; Kim, W.; Vyas, R.; Parker, C.B.; Kirley, M.P.; Keil, A.D.; Gilchrist, K.H.; Radauscher, E.J.; et al. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector. J. Am. Soc. Mass. Spectrom. 2018, 29, 360–372. [Google Scholar] [CrossRef]
- Radauscher, E.J.; Parker, C.B.; Gilchrist, K.H.; Di Dona, S.; Russell, Z.E.; Hall, S.D.; Carlson, J.B.; Grego, S.; Edwards, S.J.; Sperline, R.P.; et al. A miniature electron ionization source fabricated using microelectromechanical systems (MEMS) with integrated carbon nanotube (CNT) field emission cathodes and low-temperature co-fired ceramics (LTCC). Int. J. Mass Spectrom. 2017, 422, 162–169. [Google Scholar] [CrossRef]
- Stoner, B.R.; Piascik, J.R.; Gilchrist, K.H.; Parker, C.B.; Glass, J.T. A Bipolar Vacuum Microelectronic Device. Electron. Devices IEEE Trans. 2011, 58, 3189–3194. [Google Scholar] [CrossRef]
- Radauscher, E.J.; Gilchrist, K.H.; Di Dona, S.T.; Russell, Z.E.; Piascik, J.R.; Amsden, J.J.; Parker, C.B.; Stoner, B.R.; Glass, J.T. Improved Performance of Field Emission Vacuum Microelectronic Devices for Integrated Circuits. IEEE Trans. Electron. Devices 2016, 63, 3753–3760. [Google Scholar] [CrossRef]
- Chen, C.-W.; Lee, M.-H.; Clark, S.J. Gas molecule effects on field emission properties of single-walled carbon nanotube. Diam. Relat. Mater. 2004, 13, 1306–1313. [Google Scholar] [CrossRef]
- Nelson, J.R. Circuit Analysis Applied to the Screen-Grid Tube. Proc. Inst. Radio Eng. 1929, 17, 320–338. [Google Scholar] [CrossRef]
- Eccles, W.J.; Logic, P. Synthesis Digital Library of Engineering and Computer Science, 1st ed.; Thornton, M., Ed.; Morgan & Claypool Publishers: San Rafael, CA, USA, 2007. [Google Scholar]
- Cheng, Y.; Zhou, O. Electron field emission from carbon nanotubes. C. R. Phys. 2003, 4, 1021–1033. [Google Scholar] [CrossRef]
- Giubileo, F.; Bartolomeo, A.D.; Scarfato, A.; Iemmo, L.; Bobba, F.; Passacantando, M.; Santucci, S.; Cucolo, A.M. Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon 2009, 47, 1074–1080. [Google Scholar] [CrossRef]
- Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J. Appl. Phys. 2005, 98, 034301–034308. [Google Scholar] [CrossRef]
- Bonard, J.-M.; Maier, F.; Stöckli, T.; Châtelain, A.; de Heer, W.A.; Salvetat, J.-P.; Forró, L. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 1998, 73, 7–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Windheim, T.; Gilchrist, K.H.; Parker, C.B.; Hall, S.; Carlson, J.B.; Stokes, D.; Baldasaro, N.G.; Hess, C.T.; Scheick, L.; Rax, B.; et al. Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters. Micromachines 2023, 14, 973. https://doi.org/10.3390/mi14050973
von Windheim T, Gilchrist KH, Parker CB, Hall S, Carlson JB, Stokes D, Baldasaro NG, Hess CT, Scheick L, Rax B, et al. Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters. Micromachines. 2023; 14(5):973. https://doi.org/10.3390/mi14050973
Chicago/Turabian Stylevon Windheim, Tasso, Kristin H. Gilchrist, Charles B. Parker, Stephen Hall, James B. Carlson, David Stokes, Nicholas G. Baldasaro, Charles T. Hess, Leif Scheick, Bernard Rax, and et al. 2023. "Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters" Micromachines 14, no. 5: 973. https://doi.org/10.3390/mi14050973
APA Stylevon Windheim, T., Gilchrist, K. H., Parker, C. B., Hall, S., Carlson, J. B., Stokes, D., Baldasaro, N. G., Hess, C. T., Scheick, L., Rax, B., Stoner, B., Glass, J. T., & Amsden, J. J. (2023). Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters. Micromachines, 14(5), 973. https://doi.org/10.3390/mi14050973