Theoretical Enhancement of the Goos–Hänchen Shift with a Metasurface Based on Bound States in the Continuum
Abstract
:1. Introduction
2. Device Structure and Simulation Method
3. Results and Discussion
3.1. Physical Mechanism of All-Dielectric Metasurface Excited Reflective BIC
3.2. Theoretical Calculation of GH Shift
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghaisuddin; Abbas, M.; Khan, A.A. Enhancement of the Goos-Hanchen shift in an optomechancal cavity via Casimir force. Phys. Scr. 2021, 96, 125104. [Google Scholar] [CrossRef]
- Goos, F.; Hanchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys. 1947, 436, 333–346. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, M.Y.; Ma, Y. Effect of Goos Hnchen shift of the light transmitted through a mixture of the graphene hyperbolic metamaterial and 1D superconducting photonic crystals. Optik 2020, 223, 165636. [Google Scholar] [CrossRef]
- Aiello, A.; Woerdman, J.P. Role of beam propagation in Goos-Hanchen and Imbert-Fedorov shifts. Opt. Lett. 2008, 33, 1437–1439. [Google Scholar] [CrossRef]
- Swain, P.K.; Goswami, N.; Saha, A. LRSP resonance enhanced spatial and angular Goos-Hanchen shift and Imbert-Fedorov shift for Gaussian beam, Laguerre-Gaussian beam and Bessel beam. Opt. Commun. 2017, 382, 1–6. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, F.; Jiang, L. Enhanced and controllable Goos-Hnchen shift with graphene surface plasmon in the terahertz regime. Opt. Commun. 2019, 452, 227–232. [Google Scholar] [CrossRef]
- Akylas, V. Measurement of the longitudinal shift of radiation at total internal reflection by microwave techniques. Am. J. Phys. 1976, 44, 77–80. [Google Scholar] [CrossRef]
- Han, L.; Hu, Z.; Pan, J. High-Sensitivity Goos-Hnchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure. Sensors 2020, 20, 3605. [Google Scholar] [CrossRef]
- Chen, X.M.; Meng, C.; Zhang, T. Controllable Goos-Hnchen shift and optical switching in an Er3+-doped yttrium aluminum garnet crystal. Laser Phys. Lett. 2021, 18, 045205. [Google Scholar] [CrossRef]
- Li, D.; Cai, G.; Song, C. Polarization beam splitting in a Glan-Taylor prism based on dual effects of both Birefringence and Goos-Hanchen shift. Heliyon 2022, 8, e11754. [Google Scholar] [CrossRef]
- Artmann, K. Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann. Phys. 1948, 437, 87–102. [Google Scholar] [CrossRef]
- Wong, Y.P.; Miao, Y.; Skarda, J.H. Large negative and positive optical Goos-Hnchen shift in photonic crystals. Opt. Lett. 2018, 43, 2803. [Google Scholar] [CrossRef] [PubMed]
- Petrov, N.I.; Danilov, V.A.; Popov, V.V. Large positive and negative Goos-Hnchen shifts near the surface plasmon resonance in subwavelength grating. Opt. Express 2020, 28, 7552. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, M. Goos-Hanchen shift in a metasurface of core-shell nanoparticles. Opt. Commun. 2020, 475, 126265. [Google Scholar] [CrossRef]
- Wang, L.G.; Chen, H.; Zhu, S.Y. Large negative Goos-Hnchen shift from a weakly absorbing dielectric slab. Opt. Lett. 2005, 30, 2936–2938. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.F.; He, F.Y.; Liu, J.J. Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum. Photonics Res. 2022, 10, 2743. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Y.; Jiang, J. Manipulation of optical bound states in the continuum in a metal-dielectric hybrid nanostructure. Photonics Res. 2022, 10, 2526. [Google Scholar] [CrossRef]
- Yan, M.; Sun, K.; Ning, T.Y. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Phys. Sin. 2022, 72, 044202. [Google Scholar] [CrossRef]
- Ruan, Y.H.; Hu, Z.H.D.; Wang, J.C.H. Adjacent Asymmetric Tilt Grating Structure with Strong Resonance Assisted by Quasi-Bound States in the Continuum. IEEE Photonics J. 2022, 14, 4655906. [Google Scholar] [CrossRef]
- Qin, H.Y.; Shi, Y.Z.H.; Su, Z.P. Exploiting extraordinary topological optical forces at bound states in the continuum. Sci. Adv. 2022, 8, eade7556. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Lin, S.H.R.; Wu, J.Y.; Li, W.B.; Meng, F.; Yang, Y.Y.; Huang, X.D.; Jia, B.H.; Kivshar, Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett. 2021, 21, 8917. [Google Scholar] [CrossRef]
- Melik-Gaykazyan, E.; Koshelev, K.; Choi, J.H.; Kruk, S.S.; Bogdanov, A.; Park, H.-G.; Kivshar, Y. From Fano to Quasi-BIC Resonances in Individual Dielectric Nanoantennas. Nano Lett. 2021, 21, 1765. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Li, X.; Zhao, Y. Giant enhancement of harmonic generation in all-dielectric resonant waveguide gratings of quasi-bound states in the continuum. Opt. Express 2020, 28, 34028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, L.; Li, Y. Superior terahertz sensing metasurface based on ultrahigh-Q toroidal dipole governed by quasi-BIC. Europphys. Lett. 2022, 139, 55001. [Google Scholar] [CrossRef]
- Tang, H.Z.H.; Hu, P.; Cui, D.J. Bound states in the continuum in metal-dielectric photonic crystal with a birefringent defect. Chin. Phys. B 2022, 31, 104209. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Zhu, Y.; Duan, J. Enhancing Goos-Hnchen shift based on magnetic dipole quasi-bound states in the continuum in all-dielectric metasurfaces. Opt. Express 2021, 29, 29541. [Google Scholar] [CrossRef]
- Wu, F.; Wu, J.; Guo, Z. Giant Enhancement of the Goos-Hnchen Shift Assisted by Quasibound States in the Continuum. Phys. Rev. Appl. 2019, 12, 014028. [Google Scholar] [CrossRef]
- AlKuhaili, M.F. Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 2004, 27, 383–387. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 2012, 20, 15734. [Google Scholar] [CrossRef]
- Zhou, C.; Li, S.; Wang, Y. Multiple toroidal dipole Fano resonances of asymmetric dielectric nanohole arrays. Phys. Rev. B 2019, 100, 195306. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Yang, L. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials. Opt. Laser Technol. 2021, 140, 107072. [Google Scholar] [CrossRef]
- Yang, L.; Yu, S.; Li, H. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces. Opt. Express 2021, 29, 14905–14916. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, C.; Liu, T. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev. A 2019, 100, 063803. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W.H. Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing. J. Phys. D Appl. Phys. 2019, 52, 485104. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Fan, W.H.; Chen, X. Ultrahigh-Q terahertz sensor based on simple all-dielectric metasurface with toroidal dipole resonance. Appl. Phys. Express 2021, 14, 102008. [Google Scholar] [CrossRef]
- Wang, X.; Sang, M.; Yuan, W. Optical Relative Humidity Sensing Based on Oscillating Wave-Enhanced Goos-Hanchen Shift. IEEE Photonic Technol. Lett. 2015, 28, 264–267. [Google Scholar] [CrossRef]
- Huang, T.Y.; Yen, T.J. Experimental demonstration of broadband light trapping by exciting surface modes of an all-dielectric taper. Sci. Rep. 2019, 9, 3538. [Google Scholar] [CrossRef]
- Du, S.H.H.; Zhang, W.; Liu, W.Z.H.; Zhang, Y.; Zhao, M.; Shi, L. Realization of large transmitted optical Goos-Hanchen shifts in photonic crystal slabs. Nanophotonics 2022, 11, 4531–4536. [Google Scholar] [CrossRef]
- Song, D.; Wang, H.; Deng, M.; Wang, Y. Toroidal dipole Fano resonances supported by lattice-perturbed dielectric nanohole arrays in the near-infrared region. Appl. Opt. 2021, 60, 3458–3463. [Google Scholar] [CrossRef]
- Stylogiannis, A.; Kousias, N.; Kontses, A.; Ntziachristos, L.; Ntziachristos, V. A Low-Cost Optoacoustic Sensor for Environmental Monitoring. Sensors 2021, 21, 1379. [Google Scholar] [CrossRef]
- Shakya, A.K.; Singh, S. Design of biochemical biosensor based on transmission, absorbance and refractive index. Biosens. Bioelectron. X 2021, 10, 100089. [Google Scholar] [CrossRef]
- Bideau-Mehu, A.; Guern, Y.; Abjean, R.; Johannin-Gilles, A. Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region. Opt. Commun. 1973, 9, 432–434. [Google Scholar] [CrossRef]
- Peng, C.; Feng, C.; Xia, J.; Yap, C.; Zhou, G. Near-infrared Fano resonance in asymmetric silicon metagratings. J. Opt. 2020, 22, 095102. [Google Scholar] [CrossRef]
- Tian, S.; Dereshgi, S.A.; Hadibrata, W.; Tanriover, I.; Aydin, K. Highly Efficient Light Absorption of Monolayer Graphene by Quasi-Bound State in the Continuum. Nanomaterials 2021, 11, 484. [Google Scholar] [CrossRef]
- Cen, W.; Lang, T.; Wang, J.; Xiao, M. High-Q Fano Terahertz resonance based on bound states in the continuum in All-dielectric metasurface. Appl. Surf. Sci. 2021, 575, 151723. [Google Scholar] [CrossRef]
- Liu, W.; Liang, Z.; Qin, Z.; Shi, X.; Yang, F.; Meng, D. Polarization-insensitive dual-band response governed by quasi bound states in the continuum for high-performance refractive index sensing. Results Phys. 2021, 32, 105125. [Google Scholar] [CrossRef]
Structure | Working Waveband | Q-Factor | Refractive Index Sensitivity | Year [Reference] |
---|---|---|---|---|
| Near-infrared waveband | 6200 | 543 nm/RIU (simulation) | 2020 [43] |
| Near-infrared waveband | 387.5 | 604 nm/RIU (simulation) | 2021 [44] |
| Terahertz waveband | 1 × 105 | 3 × 105 μm/RIU (simulation) | 2022 [45] |
| Far-infrared waveband | 2000 | 2.75 μm/RIU (simulation) | 2022 [46] |
| Near-infrared waveband | 1 × 104 | 3.58 × 106 μm/RIU (simulation) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Fang, B.; Zhan, C. Theoretical Enhancement of the Goos–Hänchen Shift with a Metasurface Based on Bound States in the Continuum. Micromachines 2023, 14, 1109. https://doi.org/10.3390/mi14061109
Jiang X, Fang B, Zhan C. Theoretical Enhancement of the Goos–Hänchen Shift with a Metasurface Based on Bound States in the Continuum. Micromachines. 2023; 14(6):1109. https://doi.org/10.3390/mi14061109
Chicago/Turabian StyleJiang, Xiaowei, Bin Fang, and Chunlian Zhan. 2023. "Theoretical Enhancement of the Goos–Hänchen Shift with a Metasurface Based on Bound States in the Continuum" Micromachines 14, no. 6: 1109. https://doi.org/10.3390/mi14061109
APA StyleJiang, X., Fang, B., & Zhan, C. (2023). Theoretical Enhancement of the Goos–Hänchen Shift with a Metasurface Based on Bound States in the Continuum. Micromachines, 14(6), 1109. https://doi.org/10.3390/mi14061109