A Double-Layer Dual-Polarized Huygens Metasurface and Its Meta-Lens Antenna Applications
Abstract
:1. Introduction
2. The EM Response of Huygens’ Unit
2.1. The EM Response of the Initial Huygens Unit
2.2. Optimization of Huygens’ Unit
3. Application of Huygens’ Unit in Meta-Lens
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Minovich, A.E.; Miroshnichenko, A.E.; Bykov, A.Y.; Murzina, T.V.; Neshev, D.N.; Kivshar, Y.S. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 2015, 9, 195–213. [Google Scholar] [CrossRef]
- Chen, H.-T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Hsiao, H.-H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef]
- Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2018, 81, 026401. [Google Scholar] [CrossRef]
- Ren, X.; Jha, P.K.; Wang, Y.; Zhang, X. Nonconventional metasurfaces: From non-Hermitian coupling, quantum interactions, to skin cloak. Nanophotonics 2018, 7, 1233–1243. [Google Scholar] [CrossRef]
- Cai, T.; Tang, S.; Wang, G.; Xu, H.; Sun, S.; He, Q.; Zhou, L. High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries. Adv. Opt. Mater. 2017, 5, 1600506. [Google Scholar] [CrossRef]
- Abdelrahman, A.H.; Elsherbeni, A.Z.; Yang, F. Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs. IEEE Trans. Antennas Propag. 2014, 62, 690–697. [Google Scholar] [CrossRef]
- Chen, M.L.N.; Jiang, L.J.; Sha, W.E.I. Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies. IEEE Trans. Antennas Propag. 2017, 65, 396–400. [Google Scholar] [CrossRef]
- Akram, M.R.; Bai, X.; Jin, R.; Vandenbosch, G.A.E.; Premaratne, M.; Zhu, W. Photon Spin Hall Effect-Based Ultra-Thin Transmissive Metasurface for Efficient Generation of OAM Waves. IEEE Trans. Antennas Propag. 2019, 67, 4650–4658. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Genovesi, S. Linear-to-Circular Polarization Transmission Converter Exploiting Meandered Metallic Slots. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2191–2195. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Genovesi, S. Design of a Transmission-Type Polarization-Insensitive and Angularly Stable Polarization Rotator by Using Characteristic Modes Theory. IEEE Trans. Antennas Propag. 2023, 71, 1602–1612. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Emani, N.K.; Shaltout, A.M.; Boltasseva, A.; Shalaev, V.M.; Grbic, A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 2014, 14, 2491–2497. [Google Scholar] [CrossRef]
- Hao, W.; Deng, M.; Chen, S.; Chen, L. High-efficiency generation of airy beams with Huygens’ metasurface. Phys. Rev. Appl. 2019, 11, 054012. [Google Scholar] [CrossRef]
- Londoño, M.; Sayanskiy, A.; Araque-Quijano, J.L.; Glybovski, S.B.; Baena, J.D. Broadband Huygens’ metasurface based on hybrid resonances. Phys. Rev. Appl. 2018, 10, 034026. [Google Scholar] [CrossRef]
- Jia, S.L.; Wan, X.; Bao, D.; Zhao, Y.J.; Cui, T.J. Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface. Laser Photonics Rev. 2015, 9, 545–553. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, X.; Zhang, K.; Ratni, B.; Burokur, S.N.; Gu, X.; Wu, Q. Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater. 2018, 6, 1800121. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Y.; Monticone, F.; Zhao, J.; Zhu, B.; Jiang, T.; Zhang, L.; Kim, Y.; Ding, X.; Zhang, S.; et al. A reconfigurable active Huygens’ metalens. Adv. Mater. 2017, 29, 1606422. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Ding, X.; Zhao, W.; Zhang, K.; Li, H.; Ratni, B.; Burokur, S.N.; Wu, Q. Three-dimensional microwave holography based on broadband Huygens’ metasurface. Phys. Rev. Appl. 2020, 13, 014033. [Google Scholar] [CrossRef]
- Chong, K.E.; Wang, L.; Staude, I.; James, A.R.; Dominguez, J.; Liu, S.; Subramania, G.S.; Decker, M.; Neshev, D.N.; Brener, I.; et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 2016, 3, 514–519. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, Z.B.; Feng, Y.J.; Chen, Z.N. An ultrathin microwave Huygens’ metasurface lens. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 30 June–3 July 2015; pp. 227–228. [Google Scholar]
- Chen, M.; Epstein, A.; Eleftheriades, G.V. Design and experimental verification of a passive Huygens’ metasurface lens for gain enhancement of frequency-scanning slotted-waveguide antennas. IEEE Trans. Antennas Propag. 2019, 67, 4678–4692. [Google Scholar] [CrossRef]
- Xue, C.; Lou, Q.; Chen, Z.N. Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems. IEEE Trans. Antennas Propag. 2020, 68, 1468–1476. [Google Scholar] [CrossRef]
- Reis, J.R.; Vala, M.; Caldeirinha, R.F.S. Review Paper on Transmitarray Antennas. IEEE Access 2019, 7, 94171–94188. [Google Scholar] [CrossRef]
- Abdelrahman, A.H.; Nayeri, P.; Elsherbeni, A.Z.; Yang, F. Band-width improvement methods of transmitarray antennas. IEEE Trans. Antennas Propag. 2015, 63, 2946–2954. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Hwang, L.-T.; Horng, T.-S.; Wang, S.-M.; Chang, F.-S.; Dorny, C.N. Transmitarray design with enhanced aperture efficiency using small frequency selective surface cells and discrete jones matrix analysis. IEEE Trans. Antennas Propag. 2018, 66, 3983–3994. [Google Scholar] [CrossRef]
- Reis, J.R.; Copner, N.; Hammoudeh, A.; Al-Daher, Z.M.-E.; Caldeirinha, R.F.S.; Fernandes, T.R.; Gomes, R. FSS-inspired transmitarray for two-dimensional antenna beamsteering. IEEE Trans. Antennas Propag. 2016, 64, 2197–2206. [Google Scholar] [CrossRef]
- Xue, C.; Sun, J.; Niu, L.; Lou, Q. Ultrathin dual-polarized Huygens’ metasurface: Design and application. Annalen Physik 2020, 532, 2000151. [Google Scholar] [CrossRef]
- Xiong, Y.; Xue, C.; Guo, Q.; Li, T.; Gao, X. A shared-aperture transmissive/reflective bi-functional metasurface for both transmitarray and reflectarray. AEU-Int. J. Electron. Commun. 2023, 164, 154631. [Google Scholar] [CrossRef]
- Xue, C.; Sun, J.; Gao, X.; Chen, F.; Pang, Z.; Lou, Q.; Chen, Z.N.; Ultrathin, A. Low-Profile and High-Efficiency Metalens Antenna Based on Chain Huygens’ Metasurface. IEEE Trans. Antennas Propag. 2022, 70, 11442–11453. [Google Scholar] [CrossRef]
- An, W.; Xu, S.; Yang, F.; Li, M. A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias. IEEE Trans. Antennas Propag. 2016, 64, 1120–1125. [Google Scholar] [CrossRef]
l0 (mm) | la (mm) | lc (mm) | w1 (mm) | Transmission Amplitude (dB) | Phase Shift (Degree) |
---|---|---|---|---|---|
1.6 | 1.1 | 0.5 | 1.15 | −1.66 | −86 |
3 | 1.52 | 1.52 | 1.32 | −1.68 | −96 |
3.6 | 1.82 | 1.7 | 1.3 | −1.56 | −106 |
4 | 1.92 | 1.76 | 1.25 | −0.99 | −127 |
4.2 | 2 | 1.8 | 1.3 | −0.75 | −138 |
4.25 | 2.05 | 1.82 | 1.2 | −0.88 | −140 |
4.35 | 2.1 | 1.85 | 1.2 | −0.83 | −150 |
4.46 | 2.12 | 1.85 | 1.2 | −1.2 | −163 |
4.45 | 2.19 | 1.89 | 1.2 | −0.7 | −176 |
4.45 | 2.25 | 1.89 | 1.2 | −0.53 | −193 |
4.45 | 2.3 | 1.89 | 1.2 | −1 | −208 |
4.55 | 2.33 | 1.97 | 1.2 | −1.1 | −228 |
4.6 | 2.35 | 1.95 | 1.24 | −1.35 | −248 |
4.6 | 2.4 | 2 | 1.2 | −1.14 | −256 |
4.6 | 2.45 | 2 | 1.2 | −1.6 | −271 |
4.6 | 2.5 | 2.05 | 1.15 | −1.2 | −282 |
4.6 | 2.6 | 2.1 | 1.1 | −1.08 | −305 |
4.6 | 2.68 | 2.15 | 1.08 | −1.05 | −319 |
4.6 | 2.78 | 2.18 | 1.03 | −1.18 | −332 |
4.6 | 2.87 | 2.25 | 1 | −1.19 | −347 |
4.6 | 3.5 | 2 | 0.2 | −1.63 | −371 |
4.6 | 4.1 | 2.08 | 0.2 | −1.6 | −399 |
4.6 | 4.12 | 2.12 | 0.2 | −1.72 | −403 |
Ref | Layer Number and Style | Frequency (GHz) | F/D Ratio | Max. Gain (dBi) | Bandwidth (%) | Aperture Efficiency (%) |
---|---|---|---|---|---|---|
[28] | 4-FSS | 13.5 | 0.95 | 30.22 | 9.8 * | 50.0 |
[29] | 4-FSS | 11.7 | 0.81 | 33.8 | 12.6 * | 51.2 |
[34] | 2-FSS with vias | 20.0 | 1.24 | 33.0 | 5.9 * | 40.0 |
[31] | 2-Huygens | 28.0 | 0.95 | 31.6 | 14.1 ** | 50.0 |
This work | 2-Huygens | 28.0 | 0.95 | 31.5 | 12.86 ** | 42.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Zhou, J.; Li, R.; Xue, C. A Double-Layer Dual-Polarized Huygens Metasurface and Its Meta-Lens Antenna Applications. Micromachines 2023, 14, 1139. https://doi.org/10.3390/mi14061139
Cao S, Zhou J, Li R, Xue C. A Double-Layer Dual-Polarized Huygens Metasurface and Its Meta-Lens Antenna Applications. Micromachines. 2023; 14(6):1139. https://doi.org/10.3390/mi14061139
Chicago/Turabian StyleCao, Shuo, Jianhe Zhou, Ruxue Li, and Chunhua Xue. 2023. "A Double-Layer Dual-Polarized Huygens Metasurface and Its Meta-Lens Antenna Applications" Micromachines 14, no. 6: 1139. https://doi.org/10.3390/mi14061139
APA StyleCao, S., Zhou, J., Li, R., & Xue, C. (2023). A Double-Layer Dual-Polarized Huygens Metasurface and Its Meta-Lens Antenna Applications. Micromachines, 14(6), 1139. https://doi.org/10.3390/mi14061139