Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates
Abstract
:1. Introduction
1.1. Application of Hydrogel MPs
1.2. Application and Uses of PEG
1.3. Importance of MPs´ Formation Using Microfluidic Devices
2. Materials and Methods
2.1. Materials
2.2. Design and Impression of Microdevices
2.3. Synthesis of the MPs in the Microfluidic Device
2.4. Evaluation of the Diameter, Number, and Polydispersity Index of the MPs
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Synthesis of MPs of PEGDA Hydrogel in the Microfluidic Device
3.2. Measuring and Characterization of the Size of the MPs through Optical Microscopy and Scanning Electron Microscopy, and Evaluation of the Polydispersity Index
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Carneiro, J.; Campos, J.B.L.M.; Miranda, J.M. Production of Hydrogel Microparticles in Microfluidic Devices: A Review. Microfluid. Nanofluidics 2021, 25, 10. [Google Scholar] [CrossRef]
- Pérez-Luna, V.H.; González-Reynoso, O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ward, J.E.; Shin, S.R. Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics 2020, 12, 849. [Google Scholar] [CrossRef]
- Hegab, R.A.; Pardue, S.; Shen, X.; Kevil, C.; Peppas, N.A.; Caldorera-Moore, M.E. Effect of Network Mesh Size and Swelling to the Drug Delivery from PH Responsive Hydrogels. J. Appl. Polym. Sci. 2020, 137, 48767. [Google Scholar] [CrossRef]
- Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-Responsive Hydrogels in Drug Delivery and Tissue Engineering. Drug Deliv. 2016, 23, 758–780. [Google Scholar] [CrossRef] [Green Version]
- Nele, V.; Wojciechowski, J.P.; Armstrong, J.P.K.; Stevens, M.M. Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Adv. Funct. Mater. 2020, 30, 2002759. [Google Scholar] [CrossRef]
- Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–Drug Conjugate Therapeutics: Advances, Insights and Prospects. Nat. Rev. Drug Discov. 2019, 18, 273–294. [Google Scholar] [CrossRef]
- Hershfield, M.S.; Buckey, R.H.; Greenberg, M.L.; Melton, A.L.; Richard, S.; Hatem, C.; Kurtzberg, J.; Markert, L.; Kobayashi, R.; Kobayashi, L.; et al. Treatment of Adenosine Deaminase Deficiency with Polyethylene Glycol-Modified Adenosine Deaminase. N. Engl. J. Med. 1987, 316, 589–596. [Google Scholar] [CrossRef]
- Graham, M.L. Pegaspargase: A Review of Clinical Studies. Adv. Drug Deliv. Rev. 2003, 55, 1293–1302. [Google Scholar] [CrossRef]
- Coyle, T.E.; Reding, M.T.; Lin, J.C.; Michaels, L.A.; Shah, A.; Powell, J. Phase I Study of BAY 94-9027, a PEGylated B-Domain-Deleted Recombinant Factor VIII with an Extended Half-Life, in Subjects with Hemophilia A. J. Thromb. Haemost. 2014, 12, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Konkle, B.A.; Stasyshyn, O.; Chowdary, P.; Bevan, D.H.; Mant, T.; Shima, M.; Engl, W.; Dyck-Jones, J.; Fuerlinger, M.; Patrone, L.; et al. Pegylated, Full-Length, Recombinant Factor VIII for Prophylactic and on-Demand Treatment of Severe Hemophilia A. Blood 2015, 126, 1078–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Levy, H.; Amato, S.; Vockley, J.; Zori, R.; Dimmock, D.; Harding, C.O.; Bilder, D.A.; Weng, H.H.; Olbertz, J.; et al. Pegvaliase for the Treatment of Phenylketonuria: Results of a Long-Term Phase 3 Clinical Trial Program (PRISM). Mol. Genet. Metab. 2018, 124, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Landewé, R.; Braun, J.; Deodhar, A.; Dougados, M.; Maksymowych, W.P.; Mease, P.J.; Reveille, J.D.; Rudwaleit, M.; Van Der Heijde, D.; Stach, C.; et al. Efficacy of Certolizumab Pegol on Signs and Symptoms of Axial Spondyloarthritis Including Ankylosing Spondylitis: 24-Week Results of a Double- Blind Randomised Placebo-Controlled Phase 3 Study. Clin. Epidemiol. Res. 2014, 73, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraf, H.S.B.; Becker, M.A.; Gutierrez-urena, S.R.; Treadwell, E.L.; Vazquez-mellado, J. Tophus Burden Reduction with Pegloticase: Results from Phase 3 Randomized Trials and Open-Label Extension in Patients with Chronic Gout Refractory to Conventional Therapy Tophus Burden Reduction with Pegloticase: Results from Phase 3 Randomized Trials A. Arthritis Res. Ter. 2013, 15, R137. [Google Scholar] [CrossRef] [Green Version]
- Dijkgraaf, E.M.; Santegoets, S.J.A.M.; Reyners, A.K.L.; Goedemans, R.; Nijman, H.W.; van Poelgeest, M.I.E.; van Erkel, A.R.; Smit, V.T.H.B.M.; Daemen, T.A.H.H.; van der Hoeven, J.J.M.; et al. A Phase 1/2 Study Combining Gemcitabine, Pegintron and P53 SLP Vaccine in Patients with Platinum-Resistant Ovarian Cancer. Oncotarget 2015, 6, 32228–32243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Chen, X.; Chen, W.; Ma, X.; Huang, J.; Chen, R. Extended Peginterferon Alfa-2a (Pegasys) Therapy in Chinese Patients With HBeAg-Negative Chronic Hepatitis B. J. Med. Virol. 2014, 86, 1705–1713. [Google Scholar] [CrossRef]
- Kosaka, Y.; Rai, Y.; Masuda, N.; Takano, T.; Saeki, T.; Nakamura, S.; Shimazaki, R.; Ito, Y.; Tokuda, Y.; Tamura, K. Phase III Placebo-Controlled, Double-Blind, Randomized Trial of Pegfilgrastim to Reduce the Risk of Febrile Neutropenia in Breast Cancer Patients Receiving Docetaxel/Cyclophosphamide Chemotherapy. Support. Care Cancer 2015, 23, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freda, P.; Gordon, M.; Kelepouris, N.; Jonsson, P.; Koltowska-Haggstrom, M.; Van Der Lely, A. Long-Term Treatment with Pegvisomant as Monotherapy in Patients with Acromegaly: Experience from Acrostudy. Endocr. Pract. 2015, 21, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Autrata, R.; Krejčířová, I.; Šenková, K.; Holoušová, M.; Doležel, Z.; Borek, I. Intravitreal Pegaptanib Combined with Diode Laser Therapy for Stage 3+ Retinopathy of Prematurity in Zone I and Posterior Zone II. Eur. J. Ophthalmol. 2012, 22, 687–694. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Robson, R.; Opatrna, S.; Liogier, X.; Pannier, A.; Jordan, P.; Dougherty, F.C.; Reigner, B. Pharmacokinetics and Pharmacodynamics of Intravenous and Subcutaneous Continuous Erythropoietin Receptor Activator (C.E.R.A.) in Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2006, 1, 1211–1215. [Google Scholar] [CrossRef] [Green Version]
- Kieseier, B.C.; Arnold, D.L.; Balcer, L.J.; Boyko, A.A.; Pelletier, J.; Zhu, Y.; Seddighzadeh, A.; Hung, S.; Deykin, A.; Sheikh, S.I.; et al. Peginterferon Beta-1a in Multiple Sclerosis: 2-Year Results from ADVANCE. Mult. Scler. J. 2015, 21, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnock-jones, K.P. Naloxegol: A Review of Its Use in Patients with Opioid-Induced Constipation. Adis Drug Eval. 2015, 75, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Hashimoto, M.; Dang, T.T.; Hoare, T.; Kohane, D.S.; Whitesides, G.M.; Langer, R.; Anderson, D.G.; David, H. Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery. Small 2009, 5, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Guo, C.; Shi, Y.; Li, L.C. Recent Advances in Polymeric Microspheres for Parenteral Drug Deliverypart 2. Expert Opin. Drug Deliv. 2012, 9, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Vanapalli, S.A. Microfluidic Production of Spherical and Nonspherical Fat Particles by Thermal Quenching of Crystallizable Oils. Langmuir 2013, 29, 12307–12316. [Google Scholar] [CrossRef]
- Aghaei, H.; Solaimany Nazar, A.R. Continuous Production of the Nanoscale Liposome in a Double Flow-Focusing Microfluidic Device. Ind. Eng. Chem. Res. 2019, 58, 23032–23045. [Google Scholar] [CrossRef]
- Baby, T.; Liu, Y.; Middelberg, A.P.J.; Zhao, C.X. Fundamental Studies on Throughput Capacities of Hydrodynamic Flow-Focusing Microfluidics for Producing Monodisperse Polymer Nanoparticles. Chem. Eng. Sci. 2017, 169, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Neužil, P.; Giselbrecht, S.; Huang, T.J.; Manz, A. Revisiting Lab - on - a - Chip Technology for Drug Discovery. Nat. Rev. Drug Discov. 2012, 11, 620–632. [Google Scholar] [CrossRef]
- Jeong, H.H.; Issadore, D.; Lee, D. Recent Developments in Scale-up of Microfluidic Emulsion Generation via Parallelization. Korean J. Chem. Eng. 2016, 33, 1757–1766. [Google Scholar] [CrossRef]
- Liu, Z.; Fontana, F.; Python, A.; Hirvonen, J.T.; Santos, H.A. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small 2020, 16, 1904673. [Google Scholar] [CrossRef] [PubMed]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of Microfluidic Droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Baah, D.; Floyd-Smith, T. Microfluidics for Particle Synthesis from Photocrosslinkable Materials. Microfluid. Nanofluidics 2014, 17, 431–455. [Google Scholar] [CrossRef]
- Xu, J.H.; Luo, G.S.; Li, S.W.; Chen, G.G. Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties. Lab Chip 2006, 6, 131–136. [Google Scholar] [CrossRef]
- Tan, Y.C.; Cristini, V.; Lee, A.P. Monodispersed Microfluidic Droplet Generation by Shear Focusing Microfluidic Device. Sens. Actuators B Chem. 2006, 114, 350–356. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review Passive and Active Droplet Generation with Microfluidics: A Review. Lab Chip 2016, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.A.; Rossi, D.; Joensson, H.N.; Damiati, S. Artificial Intelligence Application for Rapid Fabrication of Size-Tunable PLGA Microparticles in Microfluidics. Sci. Rep. 2020, 10, 19517. [Google Scholar] [CrossRef]
- Dang, T.D.; Kim, Y.H.; Kim, H.G.; Kim, G.M. Preparation of Monodisperse PEG Hydrogel Microparticles Using a Microfluidic Flow-Focusing Device. J. Ind. Eng. Chem. 2012, 18, 1308–1313. [Google Scholar] [CrossRef]
- Jo, Y.K.; Lee, D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small 2020, 16, 1903736. [Google Scholar] [CrossRef]
- Hwang, D.K.; Dendukuri, D.; Doyle, P.S. Microfluidic-Based Synthesis of Non-Spherical Magnetic Hydrogel Microparticles. Lab Chip 2008, 8, 1640–1647. [Google Scholar] [CrossRef]
- Lewis, C.L.; Lin, Y.; Yang, C.; Manocchi, A.K.; Yuet, K.P.; Doyle, P.S.; Yi, H. Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates. Langmuir 2010, 26, 13436–13441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.H.; Jung, J.H.; Hwang, T.S.; Leezz, C.S. In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres. Macromol. Res. 2009, 17, 163–167. [Google Scholar] [CrossRef]
- Yu, B.; Cong, H.; Liu, X.; Ren, Y.; Wang, J.; Zhang, L.; Tang, J.; Ma, Y.; Akasaka, T. Preparation of Monodisperse PEG Hydrogel Composite Microspheres via Microfluidic Chip with Rounded Channels. J. Micromechanics Microengineering 2013, 23, 095016. [Google Scholar] [CrossRef]
- Chen, M.; Aluunmani, R.; Bolognesi, G.; Vladisavljević, G.T. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules 2022, 27, 4013. [Google Scholar] [CrossRef]
- Kizilel, S.; Pérez-Luna, V.H.; Teymour, F. Photopolymerization of Poly(Ethylene Glycol) Diacrylate on Eosin-Functionalized Surfaces. Langmuir 2004, 20, 8652–8658. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Cuevas, J.M.; González-García, J.; García-Ramírez, M.; Pérez-Luna, V.H. Generation of Photopolymerized Microparticles Based on PEGDA Using Microfluidic Devices. Part 1. Initial Gelation Time and Mechanical Properties of the Material. Micromachines 2021, 12, 293. [Google Scholar] [CrossRef]
- Lee, C. Mathematical Modeling of Poly(Ethylene Glycol) Diacrylate Hydrogel Synthesis via Visible Light Free-Radical Photopolymerization for Tissue Engineering Applications. Ph.D. Thesis, College of the Illinois Institute of Technology, Chicago, IL, USA, 2013. [Google Scholar]
- Iannotti, V.; Ausanio, G.; Ferretti, A.M.; Babar, Z.U.D.; Guarino, V.; Ambrosio, L.; Lanotte, L. Magnetic Response of Nano/Microparticles into Elastomeric Electrospun Fibers. J. Funct. Biomater. 2023, 14, 78. [Google Scholar] [CrossRef]
- Wehking, J.D.; Gabany, M.; Chew, L.; Kumar, R. Effects of Viscosity, Interfacial Tension, and Flow Geometry on Droplet Formation in a Microfluidic T-Junction. Microfluid. Nanofluidics 2014, 16, 441–453. [Google Scholar] [CrossRef]
Continuous Phase | Polymerization Light | Channel Width | Device Design | Material | Reference |
---|---|---|---|---|---|
Mineral oil | UV-light | 40 | T-junction | PDMS | [40] |
Mineral oil | UV-light | 100 | Flow-focusing (MFFD) | PDMS | [38] |
Mineral oil | UV-light | 50 | Flow-focusing (MFFD) | PDMS | [41] |
Hexadecane | UV-light | 200 | Flow-focusing (MFFD) | PDMS | [42] |
Silicone oil | UV-light | 75 | T-junction | PDMS | [43] |
Silicone oil | UV-light | 107–400 | Flow-focusing (MFFD) | Glass capillary | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Ventura, G.; García-Ramírez, M.A.; Acosta-Cuevas, J.M.; González-Reynoso, O. Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates. Micromachines 2023, 14, 1279. https://doi.org/10.3390/mi14071279
Hinojosa-Ventura G, García-Ramírez MA, Acosta-Cuevas JM, González-Reynoso O. Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates. Micromachines. 2023; 14(7):1279. https://doi.org/10.3390/mi14071279
Chicago/Turabian StyleHinojosa-Ventura, Gabriela, Mario Alberto García-Ramírez, José Manuel Acosta-Cuevas, and Orfil González-Reynoso. 2023. "Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates" Micromachines 14, no. 7: 1279. https://doi.org/10.3390/mi14071279
APA StyleHinojosa-Ventura, G., García-Ramírez, M. A., Acosta-Cuevas, J. M., & González-Reynoso, O. (2023). Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates. Micromachines, 14(7), 1279. https://doi.org/10.3390/mi14071279