Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of QRC:β-CD NICs
2.3. In-Vitro Cytotoxicity Assay
2.4. Statistical Analysis
3. Results and Discussion
3.1. Surface Characterization of QRC:β-CD NICs
3.1.1. Imaging of NICs by FE-SEM Analysis
3.1.2. Imaging of NICs by AFM Analysis
3.1.3. Imaging of NICs by HR-TEM Analysis
3.1.4. Dynamic Light Scattering (DLS) Analysis
3.1.5. XRD Analysis
3.1.6. Thermal Analysis (DSC Analysis)
3.2. Chemical Characterization of QRC:β-CD NICs
3.2.1. FT-IR Spectral Analysis
3.2.2. Raman Analysis
3.2.3. NMR Analysis
ROESY Analysis of QRC:β-CD NICs
3.3. Cytotoxic Assay on MCF-7, and MDA MB 231 Cancer Cell Lines
4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartolomé, B.; Estrella, I.; Hernandez, M.T. Interaction of low molecular weight phenolics with proteins (BSA). J. Food Sci. 2010, 65, 617–621. [Google Scholar] [CrossRef]
- Kosińska, A.; Karamać, M.; Penkacik, K.; Urbalewicz, A.; Amarowicz, R. Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. Eur. Food Res. Technol. 2011, 233, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Wagdy, S.M.; Taha, F.S. Relation between binding of proteins with phenolics at different pH values in peanut meal. World Appl. Sci. J. 2014, 32, 207–213. [Google Scholar]
- Xiao, J.B.; Huo, J.L.; Yang, F.; Chen, X.Q. Noncovalent interaction of dietary polyphenols with bovine hemoglobin in vitro: Molecular structure/property-affinity relationship aspects. J. Agric. Food Chem. 2011, 59, 8484–8490. [Google Scholar] [CrossRef]
- Gallo, M.; Vinci, G.; Graziani, G.; Simone, C.D.; Ferranti, P. The interaction of cocoa polyphenols with milk proteins studied by proteomic techniques. Food Res. Int. 2013, 54, 406–415. [Google Scholar] [CrossRef]
- Gouda, M.; Moustafa, A.; Hussein, L.; Hamza, M. Three week dietary intervention using apricots, pomegranate juice or/and fermented sour sobya and impact on biomarkers of antioxidative activity, oxidative stress and erythrocytic glutathione transferase activity among adults. Nutr. J. 2016, 15, e52. [Google Scholar] [CrossRef] [Green Version]
- Mazo, M.K.; Petrov, N.A.; Sarkisyan, V.A.; Kochetkova, A.A. The interaction of polyphenols with food proteins: Prospects for diet therapy of metabolic syndrome and type 2 diabetes. Probl. Endokrinol. 2018, 64, 252–257. [Google Scholar] [CrossRef]
- Cai, S.Q.; Zhang, Q.; Zhao, X.H.; Shi, J. The in vitro anti-inflammatory activities of galangin and quercetin towards the LPS-injured rat intestinal epithelial (IEC-6) cells as affected by heat treatment. Molecules 2021, 26, 7495. [Google Scholar] [CrossRef]
- Seyede, S.H.; Seyed, O.E.; Maryam, H.G.K.; Somayeh, R. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell. Biol. Int. 2023, 47, 98–109. [Google Scholar]
- Ali, S.; Ali, U.; Qamar, A.; Zafar, I.; Yaqoob, M.; Ain, Q.; Rashid, S.; Sharma, R.; Nafidi, H.-A.; Bin Jardan, Y.A.; et al. Predicting the effects of rare genetic variants on oncogenic signaling pathways: A computational analysis of HRAS protein function. Front. Chem. 2023, 11, 1173624. [Google Scholar] [CrossRef]
- Ali, S.; Noreen, A.; Qamar, A.; Zafar, I.; Ain, Q.; Nafidi, H.-A.; Bin Jardan, Y.A.; Bourhia, M.; Rashid, S.; Sharma, R. Amomum subulatum: A treasure trove of anticancer compounds targeting TP53 protein using in vitro and in silico techniques. Front. Chem. 2023, 11, 1174363. [Google Scholar] [CrossRef]
- Verma, T.; Aggarwal, A.; Dey, P.; Chauhan, A.K.; Rashid, S.; Chen, K.-T.; Sharma, R. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front. Nutr. 2023, 10, 1120377. [Google Scholar] [CrossRef]
- Rohit, S.; Natália, M.; Ashun, C.; Neha, G.; Vineet, S.; Kamil, K.; Eugenie, N.; Hardeep Singh, T.; Anupam, B.; Anand, C.; et al. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci. Techol. 2020, 106, 254–274. [Google Scholar]
- Ruchi, S.; Rajeev, K.S.; Subhadip, B.; Baivab, S.; Bairong, S.; Rohit, S. Role of Shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies. Neurosci. Biobeh. Rev. 2022, 140, 104795. [Google Scholar]
- Pourcel, L.; Routaboul, J.M.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 2007, 12, 29–36. [Google Scholar] [CrossRef]
- Dharambir, K.; Vivek Kumar, G.; Hardeep Singh, T.; Mukerrem Betul, Y.; Katrin, S.; Anil Kumar, S.; Manoj, K.; Vaishali, A.; Sardul Singh, S. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019, 9, 174. [Google Scholar]
- Su, Q.; Mei, P.; Zhang, Y.; Xu, W.; Yang, X. Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway. Am. J. Cancer Res. 2016, 6, 498–508. [Google Scholar]
- Bo, W.; Jing, W.; Xin-Huai, Z. Bioactivity of Two Polyphenols Quercetin and Fisetin against Human Gastric Adenocarcinoma AGS Cells as Affected by Two Coexisting Proteins. Molecules 2022, 27, 2877. [Google Scholar]
- Borghetti, G.S.; Lula, I.S. Quercetin/beta-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS. PharmSciTech 2009, 10, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Kellici, T.F.; Chatziathanasiadou, M.V. Mapping the interactions and bioactivity of quercetin(2-hydroxypropyl)-β-cyclodextrin complex. Int. J. Pharm. 2016, 511, 303–311. [Google Scholar] [CrossRef]
- Diamantis, D.A.; Ramesova, S. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Carolina, J.; Lorena, M.; Claudia, Y.; Claudio, O.-A. Complexation of quercetin with three kinds of cyclodextrins: An antioxidant study. Spectrochim. Acta. Part A 2007, 67, 230–234. [Google Scholar]
- Ebru, B.; Alper, Ö.; Behiye, Ş.; Müzeyyen, D.; Şenay, S. Quercetin, Rutin and Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Sci. 2022, 172, 106153. [Google Scholar]
- Konstantina, M.; Paraskevi, P.; Maria, C.; Dimitrios, A.D.; Dimitrios, S.; Vasiliki, V.; Nikolaos, N.; Maria, V.C.; Ioannis, A.; Kalliopi, M.; et al. Preparation and Biophysical Characterization of Quercetin Inclusion Complexes with β-Cyclodextrin Derivatives to be Formulated as Possible Nose-to-Brain Quercetin Delivery Systems. Mol. Pharm. 2020, 17, 4241–4255. [Google Scholar]
- Arumugam, P.; Samikannu, P.; Rajaram, R. Encapsulation of quercetin in β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin cavity: In-vitro cytotoxic evaluation. J. Macromol. Sci. Part A. 2017, 54, 894–901. [Google Scholar]
- Luis, F.S.F.; Marta, M.B.S.; Paula, D.P.M.; Bruno, D.S.L.; Adriano, A.S.A.; Evaleide, D.O. A novel quercetin/β-cyclodextrin transdermal gel, combined or not with therapeutic ultrasound, reduces oxidative stress after skeletal muscle injury. RSC. Adv. 2021, 11, 27837–27844. [Google Scholar]
- Zeynep, A.; Semran, I.K.; Engin, D.; Tamer, U. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chem. 2016, 197, 864–871. [Google Scholar]
- Nutsarun, W.; Chasuda, C.; Sonthaya, C.; Pongpol, E.; Orawan, S.; Piyachat, C.; Supanna, T.; Pitt, S. Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels 2022, 8, 573. [Google Scholar]
- Rajaram, R.; Chaitany, J.R.; Seong-Cheol, K.; Mani, M.K.; Yong Rok, L. Supramolecular β-Cyclodextrin-Quercetin Based Metal–Organic Frameworks as an Efficient Antibiofilm and Antifungal Agent. Molecules 2023, 28, 3667. [Google Scholar]
- Darandale, S.S.; Vavia, P.R. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J. Incl. Phenom. Macrocyc. Chem. 2013, 75, 315–322. [Google Scholar] [CrossRef]
- Jayaprabha, K.N.; Joy, P.A. Citrate modified beta-cyclodextrin functionalized magnetite nanoparticles: A biocompatible platform for hydrophobic drug delivery. RSC. Adv. 2015, 5, 22117–22125. [Google Scholar] [CrossRef]
- Karpkird, T.; Manaprasertsak, A.; Penkitti, A.; Sinthuvanich, C.; Singchuwong, T.; Leepasert, T. A novel chitosan-citric acid crosslinked beta-cyclodextrin nanocarriers for insoluble drug delivery. Carb. Res. 2020, 498, 108184. [Google Scholar] [CrossRef]
- Longwei, J.; Ning, X.; Fenghui, W.; Cancan, X.; Rong, Y.; Hongjie, T.; Huajiang, Z.; Yingzhu, L. Preparation and characterization of curcumin/β-cyclodextrin nanoparticles by nanoprecipitation to improve the stability and bioavailability of curcumin. LWT 2022, 171, 114149. [Google Scholar]
- Longwei, J.; Fuguo, J.; Yanlong, H.; Xiangyi, M.; Yawen, X.; Shigang, B. Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carb. Polym. 2021, 261, 117877. [Google Scholar]
- Memisoglu-Bilensoy, E.; Vural, I.; Bochot, A.; Renoir, J.M.; Duchene, D.; Hıncal, A.A. Tamoxifen citrate loaded amphiphilic β-cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. J. Control. Release 2005, 104, 489–496. [Google Scholar] [CrossRef]
- Ghera, B.B.; Perret, F.; Chevalier, Y.; Parrot-Lopez, H. Novel nanoparticles made from amphiphilic perfluoroalkyl α-cyclodextrin derivatives: Preparation, characterization and application to the transport of acyclovir. Int. J. Pharm. 2009, 375, 155–162. [Google Scholar] [CrossRef]
- Kaningini, A.G.; Nelwamondo, A.M.; Azizi, S.; Maaza, M.; Mohale, K.C. Metal nanoparticles in agriculture: A review of possible use. Coatings 2022, 12, 1586. [Google Scholar] [CrossRef]
- Zhang, L.; Pornpattananangkul, D.; Hu, C.-M.; Huang, C.-M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010, 17, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, R.; Yong, R.L. Microwave-assisted synthesis of copper oxide nanoparticles by apple peel extract and efficient catalytic reduction on methylene blue and crystal violet. J. Mol. Struc. 2023, 1276, 134803. [Google Scholar]
- Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers 2011, 3, 2888–2903. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, R.; Chaitany, J.R.; Seong-Cheol, K.; Sekar, A.; Yong Rok, L. Novel microwave synthesis of copper oxide nanoparticles and appraisal of the antibacterial application. Micromachines 2023, 14, 456. [Google Scholar]
- He, Y.; Fu, P.; Shen, X.; Gao, H. Cyclodextrin-based Aggregates and Characterization by Microscopy. Micron 2008, 39, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Parrot-Lopez, M.; Tchoreloff, P.; Baszkin, A.; Ling, C.-C.; de Rango, C.; Coleman, A.W. Self-Organizing Systems Based on Amphiphilic Cyclodextrin Diesters. J. Phys. Organ. Chem. 1992, 5, 518–528. [Google Scholar] [CrossRef]
- Lakkakula, J.R.; Krause, R.W.M. A Vision for Cyclodextrin Nanoparticles in Drug Delivery Systems and Pharmaceutical Applications. Nanomedicine 2014, 9, 877–894. [Google Scholar] [CrossRef] [PubMed]
- Biwer, A.; Antranikian, G.; Heinzle, E. Enzymatic Production of Cyclodextrin. Appl. Microbiol. Biotechnol. 2002, 59, 609–617. [Google Scholar] [CrossRef]
- Giuseppina, R.; Fabio, G. Understanding Surface Interaction and Inclusion Complexes between Piroxicam and Native or Crosslinked β-Cyclodextrins: The Role of Drug Concentration. Molecules 2020, 25, 2848. [Google Scholar]
- Crini, G.A. History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Zeng, P.-Y.; Ma, Z.-Q.; Xu, Z.-Y.; Wang, Z.-K.; Guo, B.; Yang, F.; Li, Z.-T. A pH-responsive complex based on supramolecular organic framework for drug-resistant breast cancer therapy. Drug Deliv. 2022, 29, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, P.X. Cyclodextrin-based Supramolecular Systems for Drug Delivery: Recent Progress and Future Perspective Adv. Drug Deliv. Rev. 2013, 65, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Choisnard, L.; Gèze, A.; Putaux, J.-L.; Wong, Y.-S.; Wouessidjewe, D. Novel Nanoparticles of β-Cyclodextrin Esters Obtained by Self-assembling of Bio-transesterified β-cyclodextrins. Biomacromolecules 2006, 7, 515–520. [Google Scholar] [CrossRef]
- Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Şen, M.; Öner, L.; Bilensoy, E. Design and Optimization of Novel Paclitaxel-loaded Folate-conjugated Amphiphilic Cyclodextrin Nanoparticles. Int. J. Pharm. 2016, 509, 375–390. [Google Scholar] [CrossRef]
- Han, Y.; Jia, F.; Bai, S.; Xiao, Y.; Meng, X.; Jiang, L. Effect of operating conditions on size of catechin/β-cyclodextrin nanoparticles prepared by nanoprecipitation and characterization of their physicochemical properties. LWT Food Sci. Techol. 2022, 153, 112447. [Google Scholar] [CrossRef]
- Memişoğlu, E.; Bochot, A.; Şen, M.; Duchêne, D.; Hıncal, A.A. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int. J. Pharm. 2003, 251, 143–153. [Google Scholar] [CrossRef]
- Baâzaoui, M.; Béjaoui, I.; Kalfat, R.; Amdouni, N.; Hbaieb, S.; Chevalier, Y. Preparation and characterization of nanoparticles made from amphiphilic mono and per-aminoalkyl-β-cyclodextrins. Coll. Surf. A 2015, 484, 365–376. [Google Scholar] [CrossRef]
- Periasamy, R.; Kothainayaki, S.; Rajamohan, R.; Sivakumar, K. Spectral investigation and characterization of host–guest inclusion complex of 4,4′-methylene-bis(2-chloroaniline) with beta-cyclodextrin. Carb. Pol. 2014, 114, 558–566. [Google Scholar] [CrossRef]
- Periasamy, R.; Rajamohan, R.; Kothainayaki, S.; Sivakumar, K. Spectral investigation and structural characterization of Dibenzalacetone: β-Cyclodextrin inclusion complex. J. Mol. Struc. 2014, 1068, 155–163. [Google Scholar] [CrossRef]
- Rajamohan, R.; Mohandoss, S.; Ashokkumar, S.; Choi, E.H.; Madi, F.; Leila, N.; Lee, Y.R. Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. J. Mol. Liq. 2022, 366, 120297. [Google Scholar] [CrossRef]
- Andreia, A.; Rita, G.; Raul, B.; Herminio, D.; Filomena, A.C.; Nuno, C.S.; Aida, M.S.; Helena, C.M. Complexation and Full Characterization of the Tretinoin and Dimethyl-βeta-Cyclodextrin Complex. AAPS. PharmSciTech 2011, 12, 553–563. [Google Scholar]
- Yan, X.; Chang, Y.; Wang, Q.; Fu, Y.; Zhou, J. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation. Int. J. Biol. Macromol. 2017, 97, 481–488. [Google Scholar] [CrossRef]
- Phillips, R.L.; Miranda, O.R.; You, C.C.; Rotello, V.M.; Bunz, U.H.F. Rapid and efficient identification of bacteria using gold-nanoparticle–poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Engl. 2008, 47, 2590–2594. [Google Scholar] [CrossRef]
- Sangiliyandi, G.; Jae, W.H.; Jung, H.P.; Jin-Hoi, K. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 2014, 9, 248. [Google Scholar]
- Arumugam, S.P.; Jeyachandran, S.; Baskaralingam, V.; Rajaram, R.; Yong Rok, L.; Stalin, T. Interaction of torsemide with native cyclodextrin through inclusion complexation: In-vitro drug release, antibacterial and antibiofilm activities. J. Mol. Struc. 2023, 1286, 135624. [Google Scholar]
- Chen, Y.L.; Su, J.Q.; Dong, W.X.; Xu, D.X.; Cheng, L.; Mao, L.K.; Yanxiang, G.; Fang, Y. Cyclodextrin-based metal-organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chem. 2022, 383, 132605. [Google Scholar] [CrossRef] [PubMed]
- Nikoleta, S.; Mariya, S.; Nevena, M.; Iliya, R.; Ani, G.; Reneta, T. Antioxidant and Antitumor Activities of Novel Quercetin-Loaded Electrospun Cellulose Acetate/Polyethylene Glycol Fibrous Materials. Antioxidant 2020, 9, 232. [Google Scholar]
- Jiang, L.; Yang, J.; Wang, Q.; Ren, L.; Zhou, J. Physicochemical properties of catechin/beta-cyclodextrin inclusion complex obtained via co-precipitation. CyTA J. Food 2019, 17, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Ioan, D.; Manuela, D.O.; Marius, D.S.; Cosmina, A.C.; Corina, I.M.; Laura, R.; Lavinia, P.D.; Alexandra, T.L.-G.; Cornelia, M.; Daniel, I.H.; et al. Fatty acid profile of Romanian’s common bean (Phaseolus vulgaris L.) lipid fractions and their complexation ability by β-cyclodextrin. PLoS ONE 2019, 14, e0225474. [Google Scholar]
- Hădărugă, N.G.; Szakal, R.N.; Chirilă, C.A.; Lukinich-Gruia, A.T.; Păunescu, V.; Muntean, C.; Rusu, G.; Bujancă, G.; Hădărugă, D.I. Complexation of Danube common nase (Chondrostoma nasus L.) oil by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. Food Chem. 2020, 303, 125419. [Google Scholar] [CrossRef]
- Hădărugă, N.G.; Bandur, G.N.; David, I.; Hădărugă, D.I. A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ. Chem. Lett. 2019, 17, 349–373. [Google Scholar] [CrossRef]
- Saba, M.; Iraj, K. Functionalization and characterization of electrocrystallized iron oxide nanoparticles in the presence of β-cyclodextrin. CrystEngComm 2016, 18, 417–426. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2001. [Google Scholar]
- Michelina, C.; Ferdinando, P.; Flavia, B.; Simona, P.; Sabina, M.; Paola, N.; Severina, P. Silica/quercetin sol–gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater. 2015, 16, 035001. [Google Scholar]
- Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuzniar, A. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. 2001, 58, 415–420. [Google Scholar]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 2014, 20, 322–330. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, C.; McClements, D.J.; Qin, Y.; Long, J.; Jiao, A.Q.; Xiaojing, L.; Jinpeng, W.; Zhengyu, J. Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chem. 2022, 376, 131869. [Google Scholar] [CrossRef]
- Yasushi, N.; Hiroyuki, T. Quantitative analysis of quercetin using Raman spectroscopy. Food Chem. 2011, 1226, 751–755. [Google Scholar]
- Tatyana, T.; Charlie, C.; Richard, L.; Tudor, S.; Ronald, L.B.; John, R.L.; Canamares, M.V.; Marco, L. Raman and surface-enhanced Raman spectra of flavone and several hydroxy derivatives. J. Raman Spectrosc. 2007, 38, 802–818. [Google Scholar]
- Kim, J.; Park, H.J.; Kim, J.H.; Chang, B.; Park, H.-K. Label-free Detection for a DNA Methylation Assay Using Raman Spectroscopy. Chin. Med. J. 2017, 130, 1961–1967. [Google Scholar] [CrossRef]
- Davis, M.E.; Marcus, E.B. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Disc. 2004, 3, 1023–1035. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamohan, R.; Ashokkumar, S.; Murugavel, K.; Lee, Y.R. Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells. Micromachines 2023, 14, 1352. https://doi.org/10.3390/mi14071352
Rajamohan R, Ashokkumar S, Murugavel K, Lee YR. Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells. Micromachines. 2023; 14(7):1352. https://doi.org/10.3390/mi14071352
Chicago/Turabian StyleRajamohan, Rajaram, Sekar Ashokkumar, Kuppusamy Murugavel, and Yong Rok Lee. 2023. "Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells" Micromachines 14, no. 7: 1352. https://doi.org/10.3390/mi14071352
APA StyleRajamohan, R., Ashokkumar, S., Murugavel, K., & Lee, Y. R. (2023). Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells. Micromachines, 14(7), 1352. https://doi.org/10.3390/mi14071352