Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instruments and Experimental Procedure
2.3. Data Processing
2.4. Molecular Dynamics Simulations
3. Results
3.1. Spectral Properties of Fluorescein at pH 6.5 under Variation of Viscosity and Temperature of the Medium
3.2. Ground State Equilibrium of the Fluorescein at pH 6.5 under Variation of Viscosity and Temperature of the Medium
Solvent (Buffer pH 6.5) | Temperature Shift of I488/I435 #, 10−2 °C−1 | ΔH &, kJ·mol−1 | |||
---|---|---|---|---|---|
No viscogenic agents | 1.53 ± 0.03 | 6.45 ± 0.10 | –0.0039 ± 0.0001 | 7.4 ± 0.4 | –0.71 ± 0.09 |
Sucrose (30%) | 1.01 ± 0.05 | 6.55 ± 0.11 | –0.0023 ± 0.0001 | 4.6 ± 0.4 | –0.65 ± 0.08 |
Glycerol (40%) | 0.80 ± 0.04 | 6.43 ± 0.09 | –0.0019 ± 0.0001 | 3.7 ± 0.3 | –0.69 ± 0.09 |
3.3. The Effects of Polarity of the Viscous Media
3.4. Interactions of Fluorescein with Sucrose and Glycerol Revealed by Molecular Dynamics
- (i)
- Oxygens of the hydroxyl and carbonyl groups (O1 and O3) form bonds with water or/and cosolvents during 95–100% of the simulation time; the cosolvents partially replace the water molecules in hydrogen bonding with O1 and O3, but without a change in the total occupancy (sets (a), (c), (d), (f));
- (ii)
- Heteroatom O2 is less available for hydrogen bonding (sets (b), (e)), and in the presence of cosolvents the total occupancy of its H-bonds decreases;
- (iii)
- The cosolvents are more likely to form H-bonds with the dianion than the monoanion (compare contributions of the cosolvents in (a) and (d), (b) and (e), (c) and (f)).
3.5. Excited State Equilibrium of the Fluorescein at pH 6.5 under Variation of Viscosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.N.; Swamy, K.M.K.; Yoon, J. Study on various fluorescein derivatives as pH sensors. Tetrahedron Lett. 2011, 52, 2340–2343. [Google Scholar] [CrossRef]
- Hou, X.; Li, Z.; Li, B.; Liu, C.; Xu, Z. An “off-on” fluorescein-based colormetric and fluorescent probe for the detection of glutathione and cysteine over homocysteine and its application for cell imaging. Sens. Actuators B Chem. 2018, 260, 295–302. [Google Scholar] [CrossRef]
- Hungerford, G.; Benesch, J.; Mano, J.F.; Reis, R.L. Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem. Photobiol. Sci. 2007, 6, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanz, E.; Gregor, M.; Slavík, J.; Kotyk, A. Use of FITC as a Fluorescent Probe for Intracellular pH Measurement. J. Fluoresc. 1997, 7, 317–319. [Google Scholar] [CrossRef]
- Sjöback, R.; Nygren, J.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, L7–L21. [Google Scholar] [CrossRef]
- Klonis, N.; Sawyer, W.H. Spectral properties of the prototropic forms of fluorescein in aqueous solution. J. Fluoresc. 1996, 6, 147–157. [Google Scholar] [CrossRef]
- Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 1999, 192, 189–221. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Tychina, O.N.; Berezhnaya, T.A.; Alekseeva, V.I.; Savvina, L.P. Ionization and tautomerism of oxyxanthene dyes in aqueous butanol. Dyes Pigm. 1999, 43, 33–46. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Mayorga, R.S. Extraordinary character of the solvent influence on protolytic equilibria: Inversion of the fluorescein ionization constants in H2O–DMSO mixtures. J. Chem. Soc. Faraday Trans. 1992, 88, 3025–3032. [Google Scholar] [CrossRef]
- Kibblewhite, J.; Drummond, C.J.; Grieser, F.; Thistlethwaite, P.J. Lipoidal eosin and fluorescein derivatives as probes of the electrostatic characteristics of self-assembled surfactant/water interfaces. J. Phys. Chem. 1989, 93, 7464–7473. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Kleshchevnikova, V.N. Influence of the cetyltrimethylammonium chloride micellar pseudophase on the protolytic equilibria of oxyxanthene dyes at high bulk phase ionic strength. J. Chem. Soc. Faraday Trans. 1994, 90, 629–640. [Google Scholar] [CrossRef]
- Sjöback, R.; Nygren, J.; Kubista, M. Characterization of fluorescein-oligonucleotide conjugates and measurement of local electrostatic potential. Biopolymers 1998, 46, 445–453. [Google Scholar] [CrossRef]
- Talavera, E.M.; Alvarez-Pez, J.M.; Ballesteros, L.; Bermejo, R. Fluorescein-Labeled DNA Probes for Homogeneous Hybridization Assays: Application to DNA E. coli Renaturation. J. Appl. Spectrosc. 1997, 51, 401–406. [Google Scholar] [CrossRef]
- Friedrich, K.; Woolley, P. Electrostatic potential of macromolecules measured by pKa shift of a fluorophore. 1. The 3’ terminus of 16S RNA. Eur. J. Biochem. 1988, 173, 227–231. [Google Scholar] [CrossRef]
- Surzhikova, D.S.; Gerasimova, M.A.; Slyusareva, E.A. Effect of Phosphate Ions on the Dianion–Anion Equilibrium of Fluorescein Excited State. Bull. Russ. Acad. Sci. Phys. 2022, 86, 1203–1206. [Google Scholar] [CrossRef]
- Petty, H.R. Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology. Microsc. Res. Tech. 2007, 70, 687–709. [Google Scholar] [CrossRef]
- Jain, P.; Aida, T.; Motosuke, M. Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein. Micromachines 2021, 12, 1109. [Google Scholar] [CrossRef]
- Persson, L.B.; Ambati, V.S.; Brandman, O. Cellular control of viscosity counters changes in temperature and energy availability. Cell 2020, 183, 1572–1585. [Google Scholar] [CrossRef]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150. [Google Scholar] [CrossRef]
- Puchkov, E.O. Intracellular viscosity: Methods of measurement and role in metabolism. Biochem. Mosc. Suppl. A Membr. Cell Biol. 2013, 7, 270–279. [Google Scholar] [CrossRef]
- Cheng, N.S. Formula for the Viscosity of a Glycerol−Water Mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.B.; Gabas, A.L. Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comp. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; A Shoemaker, B.; A Thiessen, P.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comp. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, M.J.; Tirado-Rives, J.; Jorgensen, W.L. Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. J. Chem. Theory Comput. 2015, 11, 3499–3509. [Google Scholar] [CrossRef] [Green Version]
- Dodda, L.S.; Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W.L. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017, 45, W331–W336. [Google Scholar] [CrossRef] [Green Version]
- Jahn, D.A.; Akinkunmi, F.O.; Giovambattista, N. Effects of temperature on the properties of glycerol: A computer simulation study of five different force fields. J. Phys. Chem. 2014, 118, 11284–11294. [Google Scholar] [CrossRef]
- Jamali, S.H.; Westen, T.V.; Moultos, O.A.; Vlugt, T.J. Optimizing nonbonded interactions of the OPLS force field for aqueous solutions of carbohydrates: How to capture both thermodynamics and dynamics. J. Chem. Theory Comp. 2018, 14, 6690–6700. [Google Scholar] [CrossRef]
- Martínez, L. ComplexMixtures. jl: Investigating the structure of solutions of complex-shaped molecules from a solvent-shell perspective. J. Mol. Liq. 2022, 347, 117945. [Google Scholar] [CrossRef]
- Schröder, C.R.; Weidgansa, B.M.; Klimant, I. pH Fluorosensors for use in marine systems. Analyst 2005, 130, 907–916. [Google Scholar] [CrossRef]
- Smith, S.A.; Pretorius, W.A. Spectrophotometric determination of pKa values for fluorescein using activity coefficient corrections. Water SA 2002, 28, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, B.Y.; Miheeva, L.M.; Gulaeva, N.D.; Borovskaya, A.A.; Rubtsov, M.I.; Lukatskaya, L.L.; Mchedlov-Petrossyan, N.O. Influence of non-ionic polymers on solvent properties of water as detected by studies of acid–base equilibria of sulphonephthalein and fluorescein dyes. J. Chem. Soc. Faraday Trans. 1991, 87, 931–938. [Google Scholar] [CrossRef]
- Lippert, E. Spektroskopische Bestimmung des Dipol-momentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z. Elektrochem. 1957, 61, 962–975. [Google Scholar] [CrossRef]
- Klonis, N.; Sawyer, W.H. Effect of solvent-water mixtures on the prototropic equilibria of fluorescein and on the spectral properties of the monoanion. Photochem. Photobiol. 2000, 72, 179–185. [Google Scholar] [CrossRef]
- Naderi, F.; Farajtabar, A. Solvatochromism of fluorescein in aqueous aprotic solvents. J. Mol. Liq. 2016, 221, 102–107. [Google Scholar] [CrossRef]
- Timasheff, S.N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 2002, 99, 9721–9726. [Google Scholar] [CrossRef]
- Gerasimova, M.A.; Tomilin, F.N.; Malyar, E.Y.; Varganov, S.A.; Fedorov, D.G.; Ovchinnikov, S.G.; Slyusareva, E.A. Fluorescence and photoinduced proton transfer in the protolytic forms of fluorescein: Experimental and computational study. Dyes Pigm. 2020, 173, 107851. [Google Scholar] [CrossRef]
- Alvarez-Pez, J.M.; Ballesteros, L.; Talavera, E.; Yguerabide, J. Fluorescein excited-state proton exchange reactions: Nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J. Phys. Chem. A 2001, 105, 6320–6332. [Google Scholar] [CrossRef] [Green Version]
- Magde, D.; Wong, R.; Seybold, P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 2002, 75, 327–334. [Google Scholar] [CrossRef]
- Laage, D.; Stirnemann, G.; Sterpone, F.; Rey, R.; Hynes, J.T. Reorientation and allied dynamics in water and aqueous solutions. Annu. Rev. Phys. Chem. 2011, 62, 395–416. [Google Scholar] [CrossRef] [PubMed]
- Bonn, M.; Bakker, H.J.; Rago, G.; Pouzy, F.; Siekierzycka, J.R.; Brouwer, A.M.; Bonn, D. Suppression of proton mobility by hydrophobic hydration. J. Am. Chem. Soc. 2009, 131, 17070–17071. [Google Scholar] [CrossRef] [PubMed]
- Huppert, D.; Kolodney, E.; Gutman, M.; Nachliel, E. Effect of water activity on the rate of proton dissociation. J. Am. Chem. Soc. 1982, 104, 6949–6953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surzhikova, D.P.; Sukovatyi, L.A.; Nemtseva, E.V.; Esimbekova, E.N.; Slyusareva, E.A. Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity. Micromachines 2023, 14, 1442. https://doi.org/10.3390/mi14071442
Surzhikova DP, Sukovatyi LA, Nemtseva EV, Esimbekova EN, Slyusareva EA. Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity. Micromachines. 2023; 14(7):1442. https://doi.org/10.3390/mi14071442
Chicago/Turabian StyleSurzhikova, Darya P., Lev A. Sukovatyi, Elena V. Nemtseva, Elena N. Esimbekova, and Evgenia A. Slyusareva. 2023. "Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity" Micromachines 14, no. 7: 1442. https://doi.org/10.3390/mi14071442
APA StyleSurzhikova, D. P., Sukovatyi, L. A., Nemtseva, E. V., Esimbekova, E. N., & Slyusareva, E. A. (2023). Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity. Micromachines, 14(7), 1442. https://doi.org/10.3390/mi14071442