Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods
Abstract
:1. Introduction
2. Computational Methods
2.1. Mathematical Relations
2.1.1. Particle Interaction Potentials
2.1.2. Transport Properties
2.1.3. Slip Length
2.2. Simulation Model and Dataset Creation
Parameters | Diffusion Coefficient | Shear Viscosity | Thermal Conductivity |
---|---|---|---|
Channel height | 2.64–100.44 | 2.64–100.44 | 2.64–100.44 |
External force | 0.0004–0.0743 | 0.0004–0.0743 | 0.0004–0.0743 |
Energy ratios | 0.1–5.0 | 0.1–5.0 | 0.1–5.0 |
Transport property | 1.227–10.3575 | 0.7479–3.1946 | 1.73–3.1163 |
Number of observations | 54 | 54 | 54 |
Parameters | Min | Max |
---|---|---|
Channel height | 1.049869 | 210.0 |
Groove length to channel height | 0.0119 | 1.0 |
Groove height to channel height | 0.0 | 2.05 |
Wall-to-fluid energy interaction ratio | 0.1 | 2.236 |
Wall-to-fluid particle size ratio | 1.0 | 3.0 |
Wall-to-fluid particle mass ratio | 0.663 | 20.0 |
External force | 0.0 | 4.9 |
Wall spring constant | 57.15 | 10,000.0 |
Reduced temperature | 0.8333 | 2.59 |
Reduced density | 0.0468 | 1.303 |
Slip length-to-channel height ratio | 0.0 | 7.677928 |
Number of observations | 343 |
2.3. Symbolic Regression
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeni, C.; Rossi, K.; Pavloudis, T.; Kioseoglou, J.; de Gironcoli, S.; Palmer, R.E.; Baletto, F. Data-driven simulation and characterisation of gold nanoparticle melting. Nat. Commun. 2021, 12, 6056. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Fukami, K.; Zhang, K.; Fukagata, K. Generalization techniques of neural networks for fluid flow estimation. Neural Comput. Appl. 2022, 34, 3647–3669. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Ahmed Shuvho, M.B.; Fotouhi, M.; Islam, M.S.; Ali, M.R.; Kashem, M.A. Recent machine learning guided material research—A review. Comput. Condens. Matter 2021, 29, e00597. [Google Scholar] [CrossRef]
- Wei, J.; Chu, X.; Sun, X.Y.; Xu, K.; Deng, H.X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef] [Green Version]
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 2021, 45, 4898–4905. [Google Scholar] [CrossRef]
- DeRousseau, M.; Laftchiev, E.; Kasprzyk, J.; Rajagopalan, B.; Srubar, W. A comparison of machine learning methods for predicting the compressive strength of field-placed concrete. Constr. Build. Mater. 2019, 228, 116661. [Google Scholar] [CrossRef]
- Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater. 2021, 266, 120950. [Google Scholar] [CrossRef]
- Zhong, S.; Yap, B.K.; Zhong, Z.; Ying, L. Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. Crystals 2022, 12, 168. [Google Scholar] [CrossRef]
- Zhang, L.; He, M.; Shao, S. Machine learning for halide perovskite materials. Nano Energy 2020, 78, 105380. [Google Scholar] [CrossRef]
- Artrith, N.; Butler, K.T.; Coudert, F.X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A. Best practices in machine learning for chemistry. Nat. Chem. 2021, 13, 505–508. [Google Scholar] [CrossRef]
- Karakasidis, T.E.; Sofos, F.; Tsonos, C. The Electrical Conductivity of Ionic Liquids: Numerical and Analytical Machine Learning Approaches. Fluids 2022, 7, 321. [Google Scholar] [CrossRef]
- He, W.; Bagherzadeh, S.A.; Shahrajabian, H.; Karimipour, A.; Jadidi, H.; Bach, Q.V. Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites. J. Therm. Anal. Calorim. 2020, 139, 2801–2810. [Google Scholar] [CrossRef]
- Koza, J.R. A genetic approach to econometric modeling. In Proceedings of the Sixth World Congress of the Econometric Society, Barcelona, Spain, 22–28 August 1990; Volume 27. [Google Scholar]
- Angelis, D.; Sofos, F.; Karakasidis, T.E. Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives. Arch. Comput. Methods Eng. 2023, 30, 3845–3865. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, A.; Sofos, F.; Karakasidis, T.; Liakopoulos, A. Unified description of size effects of transport properties of liquids flowing in nanochannels. Int. J. Heat Mass Transf. 2012, 55, 5087–5092. [Google Scholar] [CrossRef]
- Tomy, A.M.; Dadzie, S.K. Diffusion-Slip Boundary Conditions for Isothermal Flows in Micro- and Nano-Channels. Micromachines 2022, 13, 1425. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, R.; Sun, C. Molecular dynamics study of water diffusivity in graphene nanochannels. Int. J. Thermophys. 2020, 41, 79. [Google Scholar] [CrossRef]
- Leverant, C.J.; Greathouse, J.A.; Harvey, J.A.; Alam, T.M. Machine Learning Predictions of Simulated Self-Diffusion Coefficients for Bulk and Confined Pure Liquids. J. Chem. Theory Comput. 2023, 19, 11. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.E.; Liakopoulos, A. Parameters affecting slip length at the nanoscale. J. Comput. Theor. Nanosci. 2013, 10, 648–650. [Google Scholar] [CrossRef]
- Sun, C.; Lu, W.Q.; Bai, B.; Liu, J. Transport properties of Ar–Kr binary mixture in nanochannel Poiseuille flow. Int. J. Heat Mass Transf. 2012, 55, 1732–1740. [Google Scholar] [CrossRef]
- Nan, Y.; Li, W.; Jin, Z. Slip length of methane flow under shale reservoir conditions: Effect of pore size and pressure. Fuel 2020, 259, 116237. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y.; Fan, Y.; Xu, J.; Yang, C. Structure and Transport Properties of Water and Hydrated Ions in Nano-Confined Channels. Adv. Theory Simulations 2019, 2, 1900016. [Google Scholar] [CrossRef]
- Leverant, C.J.; Harvey, J.A.; Alam, T.M.; Greathouse, J.A. Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores. J. Phys. Chem. 2021, 125, 25898–25906. [Google Scholar] [CrossRef]
- Shahshahani, S.; Shahgholi, M.; Karimipour, A. The thermal performance and mechanical stability of methacrylic acid porous hydrogels in an aqueous medium at different initial temperatures and hydrogel volume fraction using the molecular dynamics simulation. J. Mol. Liq. 2023, 382, 122001. [Google Scholar] [CrossRef]
- Rabani, R.; Merabia, S.; Pishevar, A. Conductive heat transfer through nanoconfined argon gas: From continuum to free-molecular regime. Int. J. Therm. Sci. 2023, 192, 108391. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.; Liakopoulos, A. Variation of Transport Properties Along Nanochannels: A Study by Non-equilibrium Molecular Dynamics. In Proceedings of the IUTAM Symposium on Advances in Micro- and Nanofluidics, Dresden, Germany, 6–8 September 2007; Ellero, M., Hu, X., Fröhlich, J., Adams, N., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 67–78. [Google Scholar]
- Pas, M.F.; Zwolinski, B.J. Computation of the transport coefficients of dense fluid neon, argon, krypton and xenon by molecular dynamics. Mol. Phys. 1991, 73, 471–481. [Google Scholar] [CrossRef]
- Thompson, P.; Troian, S.A. A general boundary condition for liquid flow at solid surfaces. Nature 1997, 389, 360–362. [Google Scholar] [CrossRef]
- Barrat, J.L.; Bocquet, L. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 1999, 82, 4671. [Google Scholar] [CrossRef]
- Sofos, F. A Water/Ion Separation Device: Theoretical and Numerical Investigation. Appl. Sci. 2021, 11, 8548. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.; Liakopoulos, A. Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf. 2009, 52, 735–743. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.E. Nanoscale slip length prediction with machine learning tools. Sci. Rep. 2021, 11, 12520. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Beskok, A.; Gad-el Hak, M. Micro flows: Fundamentals and simulation. Appl. Mech. Rev. 2002, 55, B76. [Google Scholar] [CrossRef]
- Todd, B.D.; Evans, D.J.; Daivis, P.J. Pressure tensor for inhomogeneous fluids. Phys. Rev. E 1995, 52, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Bhadauria, R.; Aluru, N.R. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow. J. Chem. Phys. 2013, 139, 74109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polster, J.W.; Acar, E.T.; Aydin, F.; Zhan, C.; Pham, T.A.; Siwy, Z.S. Gating of Hydrophobic Nanopores with Large Anions. ACS Nano 2020, 14, 4306–4315. [Google Scholar] [CrossRef] [PubMed]
- Priezjev, N.V. Effect of surface roughness on rate-dependent slip in simple fluids. J. Chem. Phys. 2007, 127, 144708. [Google Scholar] [CrossRef] [Green Version]
- Eral, H.B.; van den Ende, D.; Mugele, F.; Duits, M.H.G. Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions. Phys. Rev. E 2009, 80, 61403. [Google Scholar] [CrossRef] [Green Version]
- Sofos, F.; Karakasidis, T.E. Machine Learning Techniques for Fluid Flows at the Nanoscale. Fluids 2021, 6, 96. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.E.; Liakopoulos, A. Surface wettability effects on flow in rough wall nanochannels. Microfluid. Nanofluid. 2012, 12, 25–31. [Google Scholar] [CrossRef]
- Binder, K.; Horbach, J.; Kob, W.; Paul, W.; Varnik, F. Molecular dynamics simulations. J. Phys. Condens. Matter 2004, 16, S429. [Google Scholar] [CrossRef]
- Hurst, J.; Wen, J. Computation of shear viscosity: A systems approach. In Proceedings of the Proceedings of the 2005, American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 3, pp. 2028–2033. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Holian, B.L.; Voter, A.F.; Ravelo, R. Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E 1995, 52, 2338–2347. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112. [Google Scholar] [CrossRef]
- Papastamatiou, K.; Sofos, F.; Karakasidis, T.E. Machine learning symbolic equations for diffusion with physics-based descriptions. AIP Adv. 2022, 12, 025004. [Google Scholar] [CrossRef]
- Sofos, F.; Charakopoulos, A.; Papastamatiou, K.; Karakasidis, T.E. A combined clustering/symbolic regression framework for fluid property prediction. Phys. Fluids 2022, 34, 062004. [Google Scholar] [CrossRef]
- Alam, T.M.; Allers, J.P.; Leverant, C.J.; Harvey, J.A. Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids. J. Chem. Phys. 2022, 157, 014503. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Zhong, Z. Integration of symbolic regression and domain knowledge for interpretable modeling of remaining fatigue life under multistep loading. Int. J. Fatigue 2022, 161, 106889. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Zhao, H.; Zhao, Z.; Wang, S. Determination of the fatigue equation for the cement-stabilized cold recycled mixtures with road construction waste materials based on data-driven. Int. J. Fatigue 2022, 158, 106765. [Google Scholar] [CrossRef]
- Kabliman, E.; Kolody, A.H.; Kronsteiner, J.; Kommenda, M.; Kronberger, G. Application of symbolic regression for constitutive modeling of plastic deformation. Appl. Eng. Sci. 2021, 6, 100052. [Google Scholar] [CrossRef]
- Neumann, P.; Cao, L.; Russo, D.; Vassiliadis, V.S.; Lapkin, A.A. A new formulation for symbolic regression to identify physico-chemical laws from experimental data. Chem. Eng. J. 2020, 387, 123412. [Google Scholar] [CrossRef]
- Cranmer, M. PySR: Fast & Parallelized Symbolic Regression in Python/Julia. 2020. Available online: https://zenodo.org/record/4041459 (accessed on 1 May 2023).
- Cranmer, M. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. arXiv 2023, arXiv:2305.01582. [Google Scholar]
- Wilstrup, C.; Kasak, J. Symbolic regression outperforms other models for small data sets. arXiv 2021, arXiv:2103.15147. [Google Scholar] [CrossRef]
- Galea, T.M.; Attard, P. Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid-Solid Boundary during Shear Flow. Langmuir 2004, 20, 3477–3482. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, L.; Barrat, J.L. Flow boundary conditions from nano- to micro-scales. Soft Matter 2007, 3, 685–693. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelis, D.; Sofos, F.; Papastamatiou, K.; Karakasidis, T.E. Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods. Micromachines 2023, 14, 1446. https://doi.org/10.3390/mi14071446
Angelis D, Sofos F, Papastamatiou K, Karakasidis TE. Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods. Micromachines. 2023; 14(7):1446. https://doi.org/10.3390/mi14071446
Chicago/Turabian StyleAngelis, Dimitrios, Filippos Sofos, Konstantinos Papastamatiou, and Theodoros E. Karakasidis. 2023. "Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods" Micromachines 14, no. 7: 1446. https://doi.org/10.3390/mi14071446
APA StyleAngelis, D., Sofos, F., Papastamatiou, K., & Karakasidis, T. E. (2023). Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods. Micromachines, 14(7), 1446. https://doi.org/10.3390/mi14071446