Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2
Abstract
:1. Introduction
2. Compatibility Experimental Platform and Experimental Materials
2.1. Compatibility Experimental Platform
2.2. Experimental Materials
3. Experimental Method
Experimental Steps
4. Experimental Results and Analysis
4.1. Analysis of the Influence of PD Flexible UHF Antenna Sensor Substrate on SF6 Gas Itself
4.2. Analysis of the Influence of SF6/N2 Mixture on PD Flexible UHF Antenna Sensor Substrate
4.2.1. PD Flexible UHF Antenna Sensor Substrate Topography Detection
4.2.2. PD Flexible UHF Antenna Sensor Substrate Material Surface Element Detection
5. UHF Antenna Sensor Based on PDMS
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Study on Gap Breakdown and Surface Flashover Characteristics of SF6/N2 Mixture Gas; Shenyang University of Technology: Shenyang, China, 2021; pp. 6–8. [Google Scholar]
- Ji, Y.; Zhang, M.; Wang, C.; Bi, J.; Mei, K.; Feng, Y.; Gong, Y.; Huang, Y.; Wang, H. Detection of Decomposition Products of SF6/N2 mixture gas. High Volt. Electr. Equip. 2020, 56, 97–102. [Google Scholar]
- Song, H.; Dai, J.; Li, Z.; Luo, L.; Sheng, G.; Jiang, X. An assessment method of partial discharge severity for GIS in service. Proc. CSEE 2019, 39, 1231–1240. [Google Scholar]
- Zhang, X.X.; Meng, F.S.; Ren, J.B.; Tang, J.; Yang, B. Simulation on the B-doped single-walled carbon nanotubes detecting the partial discharge of SF6. High Volt. Technol. 2011, 37, 1689–1694. [Google Scholar]
- Li, J.; Han, X.; Liu, Z.; Yao, X. A novel GIS partial discharge detection sensor with integrated optical and UHF methods. IEEE Trans. Power Deliv. 2018, 33, 2047–2049. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Xiao, S. Design of external ultra-high frequency partial discharge sensor for large transformer. High Volt. Eng. 2019, 45, 499–504. [Google Scholar]
- Qin, J.; Wang, C.C.; Shao, W. Applying UHF to partial discharge on-line monitoring of electric power apparatus. Power Syst. Technol. 1997, 21, 33–36. [Google Scholar]
- Tang, J.; Wei, G.; Sui, X.X. Research on the dipole antenna sensor with broadband for partial discharge detection in GIS. High Volt. Eng. 2004, 30, 29–31. [Google Scholar]
- Wang, L.; Zheng, S.; Li, C. Distribution of electric field strength and spectral characteristic of UHF signal of partial discharge inside GIS at resin sprue of metal ring. Power Syst. Technol. 2014, 38, 3843–3849. [Google Scholar]
- Lu, Q.; Zheng, S.; Li, X.; Wang, L.; Tang, Z.; Zhan, H. Study on propagation characteristics of UHF signal via hole of GIS mental flange and development of external radiating antenna. Power Syst. Technol. 2013, 37, 2303–2309. [Google Scholar]
- Tan, Q.; Tang, J.; Zeng, F.P. Design of fourfold-band micro-strip monopole antenna for partial discharge detection in gas insulated switch-gear. Trans. China Electrotech. Soc. 2016, 31, 127–144. [Google Scholar]
- Bao, L.; Li, J.; Xue, W.; Zhang, J.; Cheng, C. Application of genetic algorithms in optimization of partial discharge ultra-high frequency fractal Hilbert antenna. High Volt. Eng. 2015, 41, 3959–3966. [Google Scholar] [CrossRef]
- Zhou, W.J.; Liu, Y.S.; Li, P.F.; Yu, J.H. Modified Vivaldi antenna applied to detect partial discharge in electrical equipment based on ultra-high frequency method. Trans. China Electrotech. Soc. 2017, 32, 259–267. [Google Scholar]
- Ji, S.C.; Wang, Y.Y.; Li, J.H. Review of UHF antenna for detecting partial discharge in GIS. High Volt. Appar. 2015, 51, 163–172. [Google Scholar]
- Zhang, G.; Chen, K.; Li, X.; Wang, K.; Fang, R. Flexible Built-in Miniaturized Archimedes Helical Antenna Sensor for GIS PD Detection. High Volt. Technol. 2022, 48, 2244–2254. [Google Scholar]
- Zhang, G.; Han, J.; Liu, J.; Chen, K.; Zhang, S. GIS PD detection antenna body and balun coplanar flexible miniaturized UHF antenna sensor. Trans. China Electrotech. Soc. 2023, 38, 1064–1075. [Google Scholar]
- Zhang, G.; Zhang, S.; Zhang, X.; Chen, K.; Han, J.; Liu, J. Research on a new type of GIS Partial Discharge flexible built-in Archimedes spiral antenna. High Volt. Appar. 2022, 1–10. Available online: https://kns.cnki.net/kcms/detail/61.1127.TM.20220130.1459.002.html (accessed on 1 July 2023).
- Trajkovikj, J.; Zürcher, J.F.; Skrivervik, A.K. A Robust Casing for Flexible W-BAN Antennas. IEEE Antennas Propag. Mag. 2013, 55, 287–297. [Google Scholar] [CrossRef]
- Lin, C.P.; Chang, C.H.; Cheng, Y.T.; Jou, C.F. Development of a flexible SU-8/PDMS-based antenna. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1108–1111. [Google Scholar]
- Yuan, R. Study on the Compatibility of Environmental Protection INSULATING Gas C4F7N/CO2 with Epoxy Resin; Wuhan University: Wuhan, China, 2020; pp. 5–19. [Google Scholar]
- GB/T11022-2020; Common Specifications for High-Voltage Switchgear and Controlgear Standards. Standards Press of China: Beijing, China, 2023. Available online: https://openstd.samr.gov.cn/bzgk/gb/std_list?p.p1=0&p.p90=circulation_date&p.p91=desc&p.p2=GB/T11022-2020 (accessed on 1 July 2023).
- Muniz-Miranda, M.; Muniz-Miranda, F.; Caporali, S. SERS and DFT study of copper surfaces coated with corrosion inhibitor. Beilstein J. Nanotechnol. 2014, 5, 2489–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, C.; Tang, J.; Cai, R.; Li, H.; Li, L.; Yao, Q.; Zeng, F.; Li, C. Compatibility of C5F10O with common-used sealing materials: An experimental study. AIP Adv. 2021, 11, 065200. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, P.; Cheng, L.; Liang, S. Compatibility and Interaction Mechanism between EPDM Rubber and a SF6 Alternative Gas-C4F7N/CO2/O2. ACS Omega 2021, 6, 13293–13299. [Google Scholar] [CrossRef]
- Yuan, R.; Li, H.; Zhou, W.; Zheng, Z.; Yu, J. Study of Compatibility between Epoxy Resin and C4F7N/CO2 Based on Thermal Ageing. IEEE Access 2020, 8, 119544–119553. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, G.; Ming, C.; He, L.; Liu, Y.; Liu, J.; Zhang, X. Design of a Flexible UHF Hilbert Antenna for Partial Discharge Detection in Gas-Insulated Switchgear. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 794–798. [Google Scholar] [CrossRef]
- Zhang, G.; Tian, J.; Zhang, X.; Liu, J.; Lu, C. A Flexible Planarized Biconical Antenna for Partial Discharge Detection in Gas-Insulated Switchgear. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2432–2436. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, G.; Deng, G.; Li, X. Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2. Micromachines 2023, 14, 1516. https://doi.org/10.3390/mi14081516
Hu X, Zhang G, Deng G, Li X. Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2. Micromachines. 2023; 14(8):1516. https://doi.org/10.3390/mi14081516
Chicago/Turabian StyleHu, Xukun, Guozhi Zhang, Guangyu Deng, and Xuyu Li. 2023. "Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2" Micromachines 14, no. 8: 1516. https://doi.org/10.3390/mi14081516
APA StyleHu, X., Zhang, G., Deng, G., & Li, X. (2023). Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2. Micromachines, 14(8), 1516. https://doi.org/10.3390/mi14081516