Multiple Bound State Soliton Pulses in the All Polarization Maintaining Fiber Laser
Abstract
:1. Introduction
2. Materials, Methods and Characterization
2.1. SWCNT@AFI SA
2.2. ALL-PM Fiber Laser
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, D.Y.; Zhao, B.; Shen, D.Y.; Lu, C.; Man, W.S.; Tam, H.Y. Bound-soliton fiber laser. Phys. Rev. A 2002, 66, 033806. [Google Scholar] [CrossRef] [Green Version]
- Grelu, P.; Belhache, F.; Gutty, F.; Soto-Crespo, L.M. Relative phase locking of pulses in a passively mode-locked fiber laser. J. Opt. Soc. Am. B-Opt. Phys. 2003, 20, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, P.; Hause, A.; Mitschke, F. Two-soliton and three-soliton molecules in optical fibers. Phys. Rev. A 2013, 87, 043834. [Google Scholar] [CrossRef] [Green Version]
- Malomed, B.A. Bound solitons in coupled nonlinear schrodinger-equations. Phys. Rev. A 1992, 45, R8321–R8323. [Google Scholar] [CrossRef] [PubMed]
- Malomed, B.A. Bound-states of envelope solitons. Phys. Rev. E 1993, 47, 2874–2880. [Google Scholar] [CrossRef]
- Tang, D.Y.; Man, W.S.; Tam, H.Y.; Drummond, P.D. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 2001, 64, 033814. [Google Scholar] [CrossRef] [Green Version]
- Grelu, P.; Beal, J.; Soto-Crespo, J.M. Soliton pairs in a fiber laser: From anomalous to normal average dispersion regime. Opt. Express 2003, 11, 2238–2243. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Mollenauer, L.F. Experimental-observation of soliton interaction over long fiber paths—Discovery of a long-range interaction. Opt. Lett. 1989, 14, 1284–1286. [Google Scholar] [CrossRef]
- Zhao, B.; Tang, D.Y.; Shum, P.; Guo, X.; Lu, C.; Tam, H.Y. Bound twin-pulse solitons in a fiber ring laser. Phys. Rev. E 2004, 70, 4. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.Y.; Zhao, B.; Zhao, L.M.; Tam, H.Y. Soliton interaction in a fiber ring laser. Phys. Rev. E 2005, 72, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Tang, D.Y.; Luan, X.N.; Zhang, Q. Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber. Opt. Commun. 2011, 284, 3615–3618. [Google Scholar] [CrossRef]
- Akhmediev, N.N.; Ankiewicz, A.; Soto-Crespo, J.M. Stable soliton pairs in optical transmission lines and fiber lasers. J. Opt. Soc. Am. B-Opt. Phys. 1998, 15, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Grelu, P.; Belhache, F.; Gutty, F.; Soto-Crespo, J.M. Phase-locked soliton pairs in a stretched-pulse fiber laser. Opt. Lett. 2002, 27, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Ortac, B.; Hideur, A.; Chartier, T.; Brunel, M.; Grelu, P.; Leblond, H.; Sanchez, E. Generation of bound states of three ultrashort pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser. IEEE Photonics Technol. Lett. 2004, 16, 1274–1276. [Google Scholar] [CrossRef]
- Hsiang, W.W.; Lin, C.Y.; Lai, Y.C. Stable new bound soliton pairs in a 10 GHz hybrid frequency modulation mode-locked Er-fiber laser. Opt. Lett. 2006, 31, 1627–1629. [Google Scholar] [CrossRef]
- Guo, B.; Guo, X.Y.; Zhou, R.L.; Ren, Z.Y.; Chen, Q.M.; Xu, R.C.; Luo, W.B. Multi-pulse bound soliton fiber laser based on MoTe2 saturable absorber. Nanomaterials 2023, 13, 177. [Google Scholar] [CrossRef]
- Wang, Y.D.; Mao, D.; Gan, X.T.; Han, L.; Ma, C.J.; Xi, T.L.; Zhang, Y.; Shang, W.Y.; Hua, S.J.; Zhao, J.L. Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber. Opt. Express 2015, 23, 205–210. [Google Scholar] [CrossRef]
- Fu, B.; Li, J.; Cao, Z.; Popa, D. Bound states of solitons in a harmonic graphene-mode-locked fiber laser. Photonics Res. 2019, 7, 116–120. [Google Scholar] [CrossRef]
- Gui, L.L.; Xiao, X.S.; Yang, C.X. Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser. J. Opt. Soc. Am. B-Opt. Phys. 2013, 30, 158–164. [Google Scholar] [CrossRef]
- Kokhanovskiy, A.; Kuprikov, E.; Kobtsev, S. Single-and multi-soliton generation in figure-eight mode-locked fibre laser with two active media. Opt. Laser Technol. 2020, 131, 106422. [Google Scholar] [CrossRef]
- Wu, C.H.; Yao, Y.; Yang, Y.; Xu, X.C.; Tian, J.J.; Xu, K. Wavelength-switchable and multi-pulse bound state based on a hybrid mode-locked mechanism. Opt. Express 2022, 30, 10732–10742. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.N.; Lu, Y.G.; Huang, J.; Peng, J.Q.; He, C.J. Third-order optical nonlinearity measurements and optical limiting experiment in Tm: YAG crystal. Appl. Opt. 2022, 61, 392–397. [Google Scholar] [CrossRef] [PubMed]
- He, C.J.; Wen, Y.; Wen, Y.Y.; Zhou, K.; Deng, C.G.; Li, Q.; Lu, Y.A. Optical Properties of PT-Based Relaxor Ferroelectric Crystals. Cryst. Res. Technol. 2023, 58, 202200197. [Google Scholar] [CrossRef]
- Zhu, X.R.; He, C.J.; Wen, Y.Y.; Deng, C.G.; Li, Q.; Chen, Z.Y.; Chen, H.B.; Lu, Y.A.; Liu, Y.W. Electrical and optical properties of Nd3+-doped rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystal. J. Lumin. 2022, 252, 119419. [Google Scholar] [CrossRef]
- Zheng, J.C.; He, C.J.; Wen, Y.; Li, H.X. Performance tunable passively Q-switched fiber laser based on single-walled carbon nanotubes. Mod. Phys. Lett. B 2022, 36, 2250054. [Google Scholar] [CrossRef]
- Xu, X.T.; Ruan, S.C.; Zhai, J.P.; Li, L.; Pei, J.H.; Tang, Z.K. Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes. Photonics Res. 2018, 6, 996–1002. [Google Scholar] [CrossRef]
- Xu, X.; Zhai, J.; Chen, Y.; Zhu, H.; Li, L.; Ruan, S.; Tang, Z. Well-aligned single-walled carbon nanotubes for optical pulse generation and laser operation states manipulation. Carbon 2015, 95, 84–90. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Shi, W.; Sun, D.; Chu, S.; Sun, L.; Zhang, W.; Chen, Y.; Zhai, J.; Ruan, S.; et al. Zeolite templated carbon nanodots for broadband ultrafast pulsed fiber laser generation. Photonics Res. 2019, 7, 1182–1187. [Google Scholar] [CrossRef]
- Sun, D.L.; Xu, X.T.; Chen, J.Q.; Shi, W.T.; Sun, L.; Chu, S.W.; Ruan, S.C. Passively Q-switched ytterbium-doped fiber laser based on a SWCNT@AFI saturable absorber. Opt. Laser Technol. 2021, 136, 106781. [Google Scholar] [CrossRef]
- Sun, D.L.; Pei, J.H.; Chu, S.W.; Sun, L.; Lu, J.; Xu, X.T.; Ruan, S.C. Generation of ultra-high signal to noise ratio harmonics in an all-polarization-maintaining fiber laser. J. Light. Technol. 2023, 41, 255–264. [Google Scholar] [CrossRef]
- Sun, D.L.; Pei, J.H.; Sun, L.; Chu, S.W.; Xu, X.T.; Ruan, S.C. Broadband Q-switched pulse modulation of the zeolite based single wall carbon nanotube. Opt. Laser Technol. 2023, 162, 109292. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Tang, Z.K.; Sun, H.D.; Wang, J.; Chen, J.; Li, G. Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal. Appl. Phys. Lett. 1998, 73, 2287–2289. [Google Scholar] [CrossRef]
- Wang, N.; Tang, Z.K.; Li, G.D.; Chen, J.S. Materials science: Single-Walled 4 A carbon nanotube arrays. Nature 2000, 408, 50–51. [Google Scholar] [CrossRef]
- Tang, Z.K.; Zhai, J.P.; Tong, Y.Y.; Hu, X.J.; Ping, S. Resonant Raman scattering of smallest single-walled carbon nanotubes. Phys. Rev. Lett. 2008, 101, 047402. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shi, W.; Lortz, R.; Sheng, P. Superconductivity in 4-Angstrom carbon nanotubes-a short review. Nanoscale 2012, 4, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.F.; Siu, G.G.; Fu, R.K.Y.; Chu, P.K.; Li, Z.M.; Zhai, J.P.; Liu, H.J.; Tang, Z.K.; Lai, C.W.; Ong, H.C. Visible cathodoluminescence of 4 A angstrom single-walled carbon nanotubes. Appl. Phys. Lett. 2005, 87, 3. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.T.; Zhai, J.P.; Chen, Y.P.; Li, I.L.; Chen, H.Y.; Ruan, S.C.; Tang, Z.K. Synthesis of large single crystals of AlPO-LTA by using n-Propylamine as structure directing agent. J. Cryst. Growth 2014, 407, 1–5. [Google Scholar] [CrossRef]
- Labropoulos, A.; Veziri, C.; Kapsi, M.; Pilatos, G.; Likodimos, V.; Tsapatsis, M.; Kanellopoulos, N.K.; Romanos, G.E.; Karanikolos, G.N. Carbon Nanotube Selective Membranes with Subnanometer, Vertically Aligned Pores, and Enhanced Gas Transport Properties. Chem. Mater. 2015, 27, 8198–8210. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, H.J.; Nam, S.M.; Song, Y.W. High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition. Opt. Express 2011, 19, 4762–4767. [Google Scholar] [CrossRef]
- Sun, H.D.; Tang, Z.K.; Wang, J.N. Conductance of mono-sized carbon nanotubes in channels of zeolite crystal. J. Magn. Magn. Mater. 1999, 198–199, 255–257. [Google Scholar] [CrossRef]
- Tang, Z.K.; Zhang, L.Y.; Wang, N.; Zhang, X.X.; Wen, G.H.; Li, G.D.; Wang, J.N.; Chan, C.T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001, 292, 2462–2465. [Google Scholar] [CrossRef] [PubMed]
- Azzam, S.I.; Kildishev, A.V. Time-domain dynamics of saturation of absorption using multilevel atomic systems. Opt. Mater. Express 2018, 8, 3829–3834. [Google Scholar] [CrossRef]
- Zheng, J.C.; Yang, S.; Nie, X.C.; Li, L. All-polarization-maintaining passively mode-locked Erbium-doped fiber laser based on a WDM-Isolator-Tap hybrid device. J. Russ. Laser Res. 2021, 42, 82–86. [Google Scholar] [CrossRef]
- Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.1. Anomalous dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.Y.; Zhao, L.M.; Wu, X. Dark pulse emission of a fiber laser. Phys. Rev. A 2009, 80, 045803. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhang, H.; Zhao, L.M.; Wu, X. Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett. 2008, 101, 153904. [Google Scholar] [CrossRef] [Green Version]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Song, Y.F.; Zhang, H.; Zhao, L.M.; Shen, D.Y.; Tang, D.Y. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 2016, 24, 1814–1822. [Google Scholar] [CrossRef]
- Song, Y.F.; Shi, X.J.; Wu, C.F.; Tang, D.Y.; Zhang, H. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 2019, 6, 021313. [Google Scholar] [CrossRef]
- Wang, Y.T.; Fu, S.N.A.; Kong, J.; Komarov, A.; Klimczak, M.; Buczynski, R.; Tang, X.H.; Tang, M.; Qin, Y.W.; Zhao, L.M. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation. Photonics Res. 2021, 9, 1531–1539. [Google Scholar] [CrossRef]
- Soto-Crespo, J.M.; Akhmediev, N.; Grelu, P.; Belhache, F. Quantized separations of phase-locked soliton pairs in fiber lasers. Opt. Lett. 2003, 28, 1757–1759. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.K.; Wang, D.N.; Yang, F.; Li, L.J.; Zhao, C.L.; Xu, B.; Jin, S.Z.; Cao, S.Y.; Fang, Z.J. Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking. Opt. Lett. 2018, 43, 2078–2081. [Google Scholar] [CrossRef]
- Fan, Y.F.; Wang, D.N.; Xu, B. Generation of conventional solitons and bound state solitons in a passively mode-locked fiber laser based on GIMF-NCF-GIMF structured saturable absorber. Laser Phys. Lett. 2023, 20, 065107. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Cheng, T.H.; Tam, H.Y.; Lu, C. Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion. Appl. Opt. 2007, 46, 4768–4773. [Google Scholar] [CrossRef] [Green Version]
- Socci, L.; Romagnoli, M. Long-range soliton interactions in periodically amplified fiber links. J. Opt. Soc. Am. B-Opt. Phys. 1999, 16, 12–17. [Google Scholar] [CrossRef]
- Ortac, B.; Hideur, A.; Brunel, M.; Chedot, C.; Limpert, J.; Tunnermann, A.; Ilday, F.O. Generation of parabolic bound pulses from a Yb-fiber laser. Opt. Express 2006, 14, 6075–6083. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Zhao, Q.; Chu, S.; Cao, C.; Pei, J.; Xu, X.; Ruan, S. Multiple Bound State Soliton Pulses in the All Polarization Maintaining Fiber Laser. Micromachines 2023, 14, 1528. https://doi.org/10.3390/mi14081528
Sun D, Zhao Q, Chu S, Cao C, Pei J, Xu X, Ruan S. Multiple Bound State Soliton Pulses in the All Polarization Maintaining Fiber Laser. Micromachines. 2023; 14(8):1528. https://doi.org/10.3390/mi14081528
Chicago/Turabian StyleSun, Dalin, Qi Zhao, Shaowen Chu, Chunyu Cao, Jihong Pei, Xintong Xu, and Shuangchen Ruan. 2023. "Multiple Bound State Soliton Pulses in the All Polarization Maintaining Fiber Laser" Micromachines 14, no. 8: 1528. https://doi.org/10.3390/mi14081528
APA StyleSun, D., Zhao, Q., Chu, S., Cao, C., Pei, J., Xu, X., & Ruan, S. (2023). Multiple Bound State Soliton Pulses in the All Polarization Maintaining Fiber Laser. Micromachines, 14(8), 1528. https://doi.org/10.3390/mi14081528