Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of CsPbI3−xBrx Perovskite Solar Cells
2.2. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Li, C.; Pan, Y.; Hu, J.; Qiu, S.; Zhang, C.; Yang, Y.; Chen, S.; Liu, X.; Brabec, C.J.; Nazeeruddin, M.K.; et al. Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Lett. 2020, 5, 1386–1395. [Google Scholar] [CrossRef]
- Chang, J.; Lin, Z.; Zhu, H.; Isikgor, F.H.; Xu, Q.-H.; Zhang, C.; Hao, Y.; Ouyang, J. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. J. Mater. Chem. A 2016, 4, 16546–16552. [Google Scholar] [CrossRef]
- Chang, S.H.; Tseng, P.-C.; Chiang, S.-E.; Wu, J.-R.; Chen, Y.-T.; Chen, C.-J.; Yuan, C.-T.; Chen, S.-H. Structural, optical and excitonic properties of MAxCs1−xPb(IxBr1−x)3 alloy thin films and their application in solar cells. Sol. Energy Mater. Sol. Cells 2020, 210, 110478. [Google Scholar] [CrossRef]
- Deng, X.; Cao, Z.; Yuan, Y.; Oliver Lam Chee, M.; Xie, L.; Wang, A.; Xiang, Y.; Li, T.; Dong, P.; Ding, L.; et al. Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coord. Chem. Rev. 2020, 420, 213408. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Ji, S.G.; Kim, J.Y. Monolithic all-perovskite tandem solar cells: Recent progress and challenges. J. Korean Ceram. Soc. 2021, 58, 399–413. [Google Scholar] [CrossRef]
- Du, X.; Zhang, J.; Su, H.; Guo, X.; Hu, Y.; Liu, D.; Yuan, N.; Ding, J.; Gao, L.; Liu, S.F. Synergistic Crystallization and Passivation by a Single Molecular Additive for High-Performance Perovskite Solar Cells. Adv. Mater. 2022, 34, e2204098. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; et al. Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 2015, 27, 5176–5183. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M.; et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95. [Google Scholar] [CrossRef]
- Manser, J.S.; Kamat, P.V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 2014, 8, 737–743. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Z.; Wei, W.; Hao, Y.; Liu, S.; Ouyang, J.; Chang, J. Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Lett. 2022, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Liu, Z.; Duan, Y.; Wang, J.; Yang, S.; Xu, D.; Xiang, W.; Wang, T.; Yuan, N.; Ding, J.; et al. Hydrazide Derivatives for Defect Passivation in Pure CsPbI3 Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202205012. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Q.; Gu, X.; Zhang, S.; Wang, Z.; Zuo, X.; Liu, Y.; Zhao, K.; Liu, S. Synchronous Surface Reconstruction and Defect Passivation for High-Performance Inorganic Perovskite Solar Cells. Small 2022, 18, 2202690. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Jiang, Q.; Wei, Z.; Zhang, Y.; You, H.; Chen, D.; Zhu, W.; He, F.; Zhang, C. Charge-Transporting-Layer-Free, Vacuum-Free, All-Inorganic CsPbIBr2 Perovskite Solar Cells Via Dipoles-Adjusted Interface. Nanomaterials 2020, 10, 1324. [Google Scholar] [CrossRef]
- Wang, Z.; Baranwal, A.K.; Kamarudin, M.A.; Ng, C.H.; Pandey, M.; Ma, T.; Hayase, S. Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 2019, 59, 258–267. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Cao, S.; Wang, M.; Chen, J.; Zang, Z. Interface Modulator of Ultrathin Magnesium Oxide for Low-Temperature-Processed Inorganic CsPbIBr2 Perovskite Solar Cells with Efficiency Over 11%. Sol. RRL 2020, 4, 2000226. [Google Scholar] [CrossRef]
- Yang, S.; Duan, Y.; Liu, Z.; Liu, S. Recent Advances in CsPb X 3 Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies. Adv. Energy Mater. 2022, 2201733. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Vasilopoulou, M.; Soultati, A.; Haider, M.I.; Briscoe, J.; Fotopoulos, V.; Di Girolamo, D.; Davazoglou, D.; Chroneos, A.; Yusoff, A.R.B.M.; et al. Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Sol. RRL 2021, 5, 2000555. [Google Scholar] [CrossRef]
- Han, S.; Zhang, H.; Li, Y.; Wang, R.; He, Q. Solution-processed amino acid modified SnO2 electron transport layer for carbon-based CsPbIBr2 perovskite solar cells. Mater. Sci. Semicond. Process. 2021, 133, 105964. [Google Scholar] [CrossRef]
- Xu, J.; Cui, J.; Yang, S.; Liu, Z.; Guo, X.; Che, Y.; Xu, D.; Zhao, W.; Yuan, N.; Ding, J.; et al. Stable High-Efficiency CsPbI2Br Solar Cells by Designed Passivation Using Multifunctional 2D Perovskite. Adv. Funct. Mater. 2022, 32, 2202829. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, S.; Liu, A.; Kamata, Y.; Teo, S.; Yang, S.; Xu, Z.; Hayase, S.; Ma, T. Niobium Incorporation into CsPbI2Br for Stable and Efficient All-Inorganic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 19994–20003. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, X.; Liu, Z.; Sun, B.; Li, J.; Xi, S.; Shi, T.; Tang, Z.; Liao, G. Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 2020, 499, 143990. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Lei, M.; Zhang, W.; Zhu, G. Optimizing the substrate pre-heating and post-annealing temperatures for fabricating high-performance carbon-based CsPbIBr2 inorganic perovskite solar cells. Electrochim. Acta 2020, 349, 136354. [Google Scholar] [CrossRef]
- Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2016, 4, 3970–3990. [Google Scholar] [CrossRef]
- Xu, P.; He, H.; Ding, J.; Wang, P.; Piao, H.; Bao, J.; Zhang, W.; Wu, X.; Xu, L.; Lin, P.; et al. Simultaneous Passivation of the SnO2/Perovskite Interface and Perovskite Absorber Layer in Perovskite Solar Cells Using KF Surface Treatment. ACS Appl. Energy Mater. 2021, 4, 10921–10930. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Javed, H.M.A.; Javed, S.; Bashir, A.; Usman, M.; Akram, A.; Ahmad, M.I.; Ali, U.; Shahid, M.; Rizwan, M.; et al. Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells. Surf. Interfaces 2021, 25, 101299. [Google Scholar] [CrossRef]
- Niu, Y.; Tian, C.; Gao, J.; Fan, F.; Zhang, Y.; Mi, Y.; Ouyang, X.; Li, L.; Li, J.; Chen, S.; et al. Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 2021, 89, 106455. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Li, B.; Wang, P.; Shao, M.; Bao, J.; Wu, X.; Lin, P.; Xu, L.; Yu, X.; Cui, C. Multifunctional zwitterion modified SnO2 nanoparticles for efficient and stable planar perovskite solar cells. Org. Electron. 2022, 106, 106519. [Google Scholar] [CrossRef]
- Wang, K.; Sun, W.; Liu, W.; Huo, X.; Yin, R.; Liu, J.; Gao, Y.; You, T.; Yin, P. Mitigating interfacial and bulk defects via chlorine modulation for HTL-free all-inorganic CsPbI2Br carbon-based perovskite solar cells with efficiency over 14%. Chem. Eng. J. 2022, 445, 136781. [Google Scholar] [CrossRef]
- Ma, H.; Wang, M.; Wang, Y.; Dong, Q.; Liu, J.; Yin, Y.; Zhang, J.; Pei, M.; Zhang, L.; Cai, W.; et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chem. Eng. J. 2022, 442, 136291. [Google Scholar] [CrossRef]
- Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.-Y.; Park, T.; Choi, J. Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%). ACS Energy Lett. 2017, 2, 2667–2673. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. Adv. Energy Mater. 2018, 8, 1800794. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Liu, Z.; Wang, D.; Liu, S.F. Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. Sci. China Technol. Sci. 2021, 64, 1995–2002. [Google Scholar] [CrossRef]
- You, Y.; Tian, W.; Min, L.; Cao, F.; Deng, K.; Li, L. TiO2/WO3 Bilayer as Electron Transport Layer for Efficient Planar Perovskite Solar Cell with Efficiency Exceeding 20%. Adv. Mater. Interfaces 2020, 7, 1901406. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Z.; Jiang, E.; Wang, Z.; Yan, J.; Li, N.; Wang, Z.; Ai, Y.; Shou, C.; Yan, B.; et al. ZnO-Modified Anode for High-Performance SnO2 -Based Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 7062–7069. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, J.V.; Arandiyan, H.; Hong, C.K. Reduced methylammonium triple-cation Rb0.05(FAPbI3)0.95(MAPbBr3)0.05 perovskite solar cells based on a TiO2/SnO2 bilayer electron transport layer approaching a stabilized 21% efficiency: The role of antisolvents. J. Mater. Chem. A 2019, 7, 17516–17528. [Google Scholar] [CrossRef]
- Li, N.; Yan, J.; Ai, Y.; Jiang, E.; Lin, L.; Shou, C.; Yan, B.; Sheng, J.; Ye, J. A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci. China Mater. 2020, 63, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, H.; Shi, J.; Dong, J.; Luo, Y.; Li, D.; Meng, Q. Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J. Mater. Chem. A 2015, 3, 19288–19293. [Google Scholar] [CrossRef]
- Correa Baena, J.P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Srimath Kandada, A.R.; Zakeeruddin, S.M.; et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Yang, G.; Zheng, X.; Zhang, Z.-G.; Chen, C.; Ma, J.; Guo, Y.; Chen, Z.; Qin, P.; Li, Y.; et al. Incorporation of High-Mobility and Room-Temperature-Deposited CuxS as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Sol. RRL 2017, 1, 1700038. [Google Scholar] [CrossRef]
- Song, Z.; Bi, W.; Zhuang, X.; Wu, Y.; Zhang, B.; Chen, X.; Chen, C.; Dai, Q.; Song, H. Low-Temperature Electron Beam Deposition of Zn-SnOx for Stable and Flexible Perovskite Solar Cells. Sol. RRL 2020, 4, 1900266. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Zhang, X.; Wang, C.; Gao, D.; Han, J.; Chen, C.; Song, H.; Xu, S.; Chen, C. Highly efficient and stable perovskite solar cells based on E-beam evaporated SnO2 and rational interface defects passivation. Nano Sel. 2022, 3, 956–964. [Google Scholar] [CrossRef]
- Wu, P.; Wang, S.; Li, X.; Zhang, F. Advances in SnO2 -based perovskite solar cells: From preparation to photovoltaic applications. J. Mater. Chem. A 2021, 9, 19554–19588. [Google Scholar] [CrossRef]
Samples | Scan Direction | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) | HF |
---|---|---|---|---|---|---|
Forward | 0.82 | 16.72 | 49.11 | 6.73 | ||
SnO2 | Reverse | 0.85 | 16.74 | 56.67 | 8.09 | 0.17 |
Average | 0.84 ± 0.02 | 16.62 ± 0.60 | 51.01 ± 4.68 | 7.21 ± 0.63 | ||
Forward | 0.86 | 17.58 | 57.07 | 8.64 | ||
TiO2 | Reverse | 0.87 | 16.78 | 65.73 | 9.60 | 0.10 |
Average | 0.85 ± 0.02 | 17.09 ± 0.48 | 55.82 ± 3.90 | 8.54 ± 0.78 | ||
Forward | 0.88 | 17.87 | 68.53 | 10.82 | ||
SnO2/TiO2 | Reverse | 0.91 | 17.68 | 71.68 | 11.48 | 0.06 |
Average | 0.89 ± 0.03 | 17.35 ± 0.46 | 64.80 ± 4.89 | 9.88 ± 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, T.; Li, T.; Chen, D.; Wang, X.; Guo, K.; Wang, Q.; Zhang, F. Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature. Micromachines 2023, 14, 1549. https://doi.org/10.3390/mi14081549
Xue T, Li T, Chen D, Wang X, Guo K, Wang Q, Zhang F. Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature. Micromachines. 2023; 14(8):1549. https://doi.org/10.3390/mi14081549
Chicago/Turabian StyleXue, Tao, Ting Li, Dandan Chen, Xiao Wang, Kunping Guo, Qiang Wang, and Fanghui Zhang. 2023. "Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature" Micromachines 14, no. 8: 1549. https://doi.org/10.3390/mi14081549
APA StyleXue, T., Li, T., Chen, D., Wang, X., Guo, K., Wang, Q., & Zhang, F. (2023). Preparation of TiO2/SnO2 Electron Transport Layer for Performance Enhancement of All-Inorganic Perovskite Solar Cells Using Electron Beam Evaporation at Low Temperature. Micromachines, 14(8), 1549. https://doi.org/10.3390/mi14081549