Laser-Based Manufacturing of Ceramics: A Review
Abstract
:1. Introduction
2. Laser Fabrication of Ceramics
2.1. Selective Laser Sintering
2.1.1. SLS with Infiltration and Pressing
2.1.2. Laser Processed Ceramics for Biomedical Applications
- High volume fractions of binder of a maximum 60 vol%;
- Geometrical precision and surface finish are not firmly necessary;
- Macro-porous configurations are personalized in a convenient way.
2.1.3. Factors Affecting the SLS of Ceramics
2.2. Selective Laser Melting
2.2.1. Challenges in SLM of Ceramics
2.2.2. Modified 3D Printing Methods for Ceramic Processing
2.3. SLS vs. SLM
3. Laser Machining of Ceramics
3.1. Laser Drilling
3.1.1. Millisecond Laser Drilling
3.1.2. Nanosecond Laser Drilling
3.1.3. Picosecond Laser Drilling
3.1.4. Femtosecond Laser Drilling
4. Conclusions
5. Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Miloš, M.; Marin, G.; Dragan, R.; Miroslav, R. Coteaţă Margareta Mathematical Modelling Of The CO2 Laser Cutting Process Using Genetic Programming. Facta Univ. Ser. Mech. Eng. (FU Mech. Eng.) 2022, 20, 665–676. [Google Scholar]
- Madić, M.; Kovačević, M.; Radovanović, M.; Blagojević, V. Software Tool For The Laser Cutting Process Control—Solving Real Industrial Case Studies. Facta Univ. Ser. Mech. Eng. 2016, 14, 135–145. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Li, G.; Li, B.; Gong, F. Fabrication, mechanical properties and fracture behaviors of the laminated Al2O3–ZrB2–MgO/Al2O3–TiN–MgO ceramic composite. Ceram. Int. 2020, 46, 857–865. [Google Scholar] [CrossRef]
- Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics 2020, 12, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckard, C.R. Method and Apparatus for Producing Parts by Selective. Sintering. Patent US4863538A, 5 September 1989. [Google Scholar]
- Lakshminarayan, U.; Marcus, H.L. Microstructural and Mechanical Properties of Al2O3/P2O5 and Al2O3/B2O3 Composties Fabricated by Selective Laser Sintering. In Proceedings of the 1991 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1991. [Google Scholar]
- Enríquez, E.; Fuertes, V.; Cabrera, M.J.; Seores, J.; Munoz, D.; Fernández, J.F. Absence of surface flaking in hierarchical glass-ceramic coating: High impact resistant ceramic tiles. J. Eur. Ceram. Soc. 2019, 39, 4450–4456. [Google Scholar] [CrossRef]
- Tan, K.H.; Chua, C.K.; Leong, K.F.; Cheah, C.M.; Cheang, P.; Bakar, M.S.A.; Cha, S.W. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115–3123. [Google Scholar] [CrossRef]
- Gao, C.; Yang, B.; Hu, H.; Liu, J.; Shuai, C.; Peng, S. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Mater. Sci. Eng. C 2013, 33, 3802–3810. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.T.; Chalker, P.R.; Davies, S.; Sutcliffe, C.J.; Tsopanos, S. Selective laser sintering of barium titanate–polymer composite films. J. Mater. Sci. 2008, 43, 3197–3202. [Google Scholar] [CrossRef]
- Tang, H. Direct laser fusing to form ceramic parts. Rapid Prototyp. J. 2002, 8, 284–289. [Google Scholar] [CrossRef]
- Xiao, K.; Dalgarno, K.W.; Wood, D.J.; Goodridge, R.D.; Ohtsuki, C. Indirect selective laser sintering of apatite—Wollostonite glass—Ceramic. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 1107–1114. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Yan, C.; Shi, Y. The effect of processing parameters on characteristics of selective laser sintering dental glass-ceramic powder. Rapid Prototyp. J. 2010, 16, 138–145. [Google Scholar] [CrossRef]
- Harlan, N.; Park, S.-M.; Bourell, D.L.; Beaman, J.J. Selective laser sintering of zirconia with micro-scale features. In Proceedings of the 1999 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 9–11 August 1999. [Google Scholar]
- Lee, I. Densification of porous Al2O3-Al4B2O9 ceramic composites fabricated by SLS process. J. Mater. Sci. Lett. 1999, 18, 1557–1561. [Google Scholar] [CrossRef]
- Shahzad, K.; Deckers, J.; Boury, S.; Neirinck, B.; Kruth, J.-P.; Vleugels, J. Preparation and indirect selective laser sintering of alumina/PA microspheres. Ceram. Int. 2012, 38, 1241–1247. [Google Scholar] [CrossRef]
- Wohlert, M.; Bourell, D. Rapid prototyping of Mg/SiC composites by a combined SLS and pressureless infiltration process. In Proceedings of the 1996 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1996. [Google Scholar]
- Friedel, T.; Travitzky, N.; Niebling, F.; Scheffler, M.; Greil, P. Fabrication of polymer derived ceramic parts by selective laser curing. J. Eur. Ceram. Soc. 2005, 25, 193–197. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Dalgarno, K.W.; Wood, D.J. Indirect selective Laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006, 220, 57–68. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Wood, D.J.; Ohtsuki, C.; Dalgarno, K.W. Biological evaluation of an apatite–mullite glass-ceramic produced via selective Laser sintering. Acta Biomater. 2007, 3, 221–231. [Google Scholar] [CrossRef]
- Song, X.H.; Li, W.; Song, P.H.; Su, Q.Y.; Wei, Q.S.; Shi, Y.S.; Liu, K.; Liu, W.G. Selective Laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int. J. Adv. Manuf. Technol. 2015, 81, 15–25. [Google Scholar]
- Chung, H.; Das, S. Functionally graded Nylon-11/silica nanocomposites produced by selective Laser sintering. Mater. Sci. Eng. A. 2008, 487, 251–257. [Google Scholar] [CrossRef]
- Yves-Christian, H.; Jan, W.; Wilhelm, M.; Konrad, W.; Reinhart, P. Net shaped high performance oxide ceramic parts by selective laser melting. Phys. Procedia 2010, 5, 587–594. [Google Scholar] [CrossRef]
- Bache, H.H. Model for strength of brittle materials built up of particles joined at points of contact. J. Am. Ceram. Soc. 1970, 53, 654–658. [Google Scholar] [CrossRef]
- Vail, N.K.; Balasubramanian, B.; Barlow, J.W.; Marcus, H.L. A thermal model of polymer degradation during selective laser sintering of polymer coated ceramic powders. Rapid Prototyp. J. 1996, 2, 24–40. [Google Scholar] [CrossRef]
- Tang, H.-H.; Chiu, M.-L.; Yen, H.-C. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc. 2011, 31, 1383–1388. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Hao, L.; Dadbakhsh, S.; Seaman, O.; Felstead, M. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J. Mater. Process. Technol. 2009, 209, 5793–5801. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Shishkovsky, I.; Yadroitsev, I.; Bertrand, P.; Smurov, I. Alumina–zirconium ceramics synthesis by selective laser sintering/melting. Appl. Surf. Sci. 2007, 254, 966–970. [Google Scholar] [CrossRef]
- Deckers, J.; Meyers, S.; Kruth, J.P.; Vleugels, J. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Phys. Procedia 2014, 56, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, P.; Bayle, F.; Combe, C.; Gœuriot, P.; Smurov, I. Ceramic components manufacturing by selective laser sintering. Appl. Surf. Sci. 2007, 254, 989–992. [Google Scholar] [CrossRef]
- Mühler, T.; Gomes, C.M.; Heinrich, J.; Günster, J. Slurry-based additive manufacturing of ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Cong, W.; Zhi, L.; Guo, Z. Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables. Ceram. Int. 2017, 43, 7768–7775. [Google Scholar] [CrossRef]
- Exner, H.; Horn, M.; Streek, A.; Ullmann, F.; Hartwig, L.; Regenfuß, P.; Ebert, R. Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual Phys. Prototyp. 2008, 3, 3–11. [Google Scholar] [CrossRef]
- Gahler, A.; Heinrich, J.G.; Guenster, J. Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer-wise slurry deposition. J. Am. Ceram. Soc. 2006, 89, 3076–3080. [Google Scholar] [CrossRef]
- Mühler, T.; Gomes, C.; Ascheri, M.E.; Nicolaides, D.; Heinrich, J.G.; Günster, J. Slurry-based powder beds for the selective laser sintering of silicate ceramics. J. Ceram. Sci. Technol. 2015, 6, 113–118. [Google Scholar]
- Griffith, M.L.; Keicher, D.M.; Atwood, C.L.; Romero, J.A.; Smugeresky, J.E.; Harwell, L.D.; Greene, D.L. Free form fabrication of metallic components using laser engineered net shaping (LENS). In Proceedings of the 1996 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1996. [Google Scholar]
- Balla, V.K.; Bose, S.; Bandyopadhyay, A. Processing of bulk alumina ceramics using laser engineered net shaping. Int. J. Appl. Ceram. Technol. 2008, 5, 234–242. [Google Scholar] [CrossRef]
- Niu, F.; Wu, D.; Ma, G.; Wang, J.; Guo, M.; Zhang, B. Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scr. Mater. 2015, 95, 39–41. [Google Scholar] [CrossRef]
- Song, H.; Kang, Z.; Liu, Z.; Wu, B. Experimental study of double-pulse laser micro sintering: A novel laser micro sintering process. Manuf. Lett. 2019, 19, 10–14. [Google Scholar] [CrossRef]
- El-Hofy, H.A.-G. Advanced Machining Processes: Nontraditional and Hybrid Machining Processes; McGraw Hill Professional: New York, NY, USA, 2005; ISBN 0071466940. [Google Scholar]
- Pandey, P.C.; Shan, H.S. Modern Machining Processes; Tata McGraw-Hill Education: New York, NY, USA, 1980; ISBN 0070965536. [Google Scholar]
- Chang, C.-W.; Kuo, C.-P. An investigation of laser-assisted machining of Al2O3 ceramics planing. Int. J. Mach. Tools Manuf. 2007, 47, 452–461. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Chen, H.-W. Laser milling of cavity in ceramic substrate by fracture-machining element technique. J. Mater. Process. Technol. 2003, 136, 158–165. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S.; Shin, D.; Sohn, H.; Kim, J.; Kim, J. Laser assisted machining process of HIPed silicon nitride. JLMN-J Laser Micro/Nanoeng 2009, 4, 207–211. [Google Scholar] [CrossRef]
- Tagliaferri, F.; Leopardi, G.; Semmler, U.; Kuhl, M.; Palumbo, B. Study of the influences of laser parameters on laser assisted machining processes. Procedia Cirp 2013, 8, 170–175. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Laser beam machining—A review. Int. J. Mach. Tools Manuf. 2008, 48, 609–628. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Experimental study of Nd: YAG laser beam machining—An overview. J. Mater. Process. Technol. 2008, 195, 15–26. [Google Scholar] [CrossRef]
- Kwang-Ryul, K.I.M.; Byoung-Deog, C.; Jun-Sin, Y.I.; Sung-Hak, C.H.O.; Yong-Ho, C.; Dong-Soo, S.; Dong-Ho, B.A.E.; Myung-Chang, K.; Jeong, Y.-K. Laser micromachining of CNT/Fe/Al2O3 nanocomposites. Trans. Nonferrous Met. Soc. China 2009, 19, s189–s193. [Google Scholar]
- Blugan, G.; Herrmann, T.; Graule, T.; Kuebler, J. Laser machining of silicon nitride based composite cantilever structures. Opt. Lasers Eng. 2011, 49, 1095–1100. [Google Scholar] [CrossRef]
- Sola, D.; Peña, J.I. Laser machining of Al2O3–ZrO2 (3% Y2O3) eutectic composite. J. Eur. Ceram. Soc. 2012, 32, 807–814. [Google Scholar] [CrossRef]
- Sciti, D.; Bellosi, A. Laser-induced surface drilling of silicon carbide. Appl. Surf. Sci. 2001, 180, 92–101. [Google Scholar] [CrossRef]
- Kacar, E.; Mutlu, M.; Akman, E.; Demir, A.; Candan, L.; Canel, T.; Gunay, V.; Sınmazcelik, T. Characterization of the drilling alumina ceramic using Nd: YAG pulsed laser. J. Mater. Process. Technol. 2009, 209, 2008–2014. [Google Scholar] [CrossRef]
- Hanon, M.M.; Akman, E.; Oztoprak, B.G.; Gunes, M.; Taha, Z.A.; Hajim, K.I.; Kacar, E.; Gundogdu, O.; Demir, A. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser. Opt. Laser Technol. 2012, 44, 913–922. [Google Scholar] [CrossRef]
- Murray, A.J.; Tyrer, J.R. Nd: YAG laser drilling of 8.3 mm thick partially stabilized tetragonal zirconia-control of recast layer microcracking using localized heating techniques. J. Laser Appl. 1999, 11, 179–184. [Google Scholar] [CrossRef]
- Guo, D.; Cai, K.; Yang, J.; Huang, Y. Spatter-free laser drilling of alumina ceramics based on gelcasting technology. J. Eur. Ceram. Soc. 2003, 23, 1263–1267. [Google Scholar] [CrossRef]
- Lu, P.W.; Yuan, G.F. Experimental study of low-pressure water jet assisted laser drilling on Al2O3 ceramic. Appl. Mech. Mater. Trans. Tech. Publ. 2014, 599, 22–26. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Cheng, M.-H. CO2 laser processing on ceramic substrates of light emitting diode assisted by compressed gas. Mach. Sci. Technol. 2015, 19, 400–415. [Google Scholar] [CrossRef]
- Nedialkov, N.; Sawczak, M.; Jendrzejewski, R.; Atanasov, P.; Martin, M.; Śliwiński, G. Analysis of surface and material modifications caused by laser drilling of AlN ceramics. Appl. Surf. Sci. 2007, 254, 893–897. [Google Scholar] [CrossRef]
- Bharatish, A.; Murthy, H.N.N.; Anand, B.; Madhusoodana, C.D.; Praveena, G.S.; Krishna, M. Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Opt. Laser Technol. 2013, 53, 22–32. [Google Scholar] [CrossRef]
- Biswas, R.; Kuar, A.S.; Biswas, S.K.; Mitra, S. Effects of process parameters on hole circularity and taper in pulsed Nd: YAG laser microdrilling of Tin-Al2O3 composites. Mater. Manuf. Process. 2010, 25, 503–514. [Google Scholar] [CrossRef]
- Iwatani, N.; Doan, H.D.; Fushinobu, K. Optimization of near-infrared laser drilling of silicon carbide under water. Int. J. Heat Mass Transf. 2014, 71, 515–520. [Google Scholar] [CrossRef]
- Wee, L.M.; Khoong, L.E.; Tan, C.W.; Lim, G.C. Solvent-Assisted Laser Drilling of Silicon Carbide. Int. J. Appl. Ceram. Technol. 2011, 8, 1263–1276. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Liu, Y.; Cheng, G.; Zhang, Q.; Hua, K. Ultra-short pulse laser deep drilling of C/SiC composites in air. Appl. Phys. A 2013, 111, 1213–1219. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Li, W.; Yang, X.; Zhang, Q.; Cheng, L.; Zhang, L. Effect of energy density on the machining character of C/SiC composites by picosecond laser. Appl. Phys. A 2014, 116, 1221–1228. [Google Scholar] [CrossRef]
- Zhang, R.; Li, W.; Liu, Y.; Wang, C.; Wang, J.; Yang, X.; Cheng, L. Machining parameter optimization of C/SiC composites using high power picosecond laser. Appl. Surf. Sci. 2015, 330, 321–331. [Google Scholar] [CrossRef]
- Li, C.; Lee, S.; Nikumb, S. Femtosecond laser drilling of alumina wafers. J. Electron. Mater. 2009, 38, 2006–2012. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, J.; Liu, Y.; Yang, X.; Zhang, Q. Micromachining features of TiC ceramic by femtosecond pulsed laser. Ceram. Int. 2015, 41, 6525–6533. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Si, J.; Chen, T.; Chen, F.; Liang, S.; Wu, Z.; Hou, X. Alcohol-assisted photoetching of silicon carbide with a femtosecond laser. Opt. Commun. 2009, 282, 78–80. [Google Scholar] [CrossRef]
Laser Output Character | Description |
---|---|
Wavelength (λ) | The laser’s wavelength determines the depth of penetration into the material and the efficiency with which the material absorbs the laser energy. For example, certain materials may strongly absorb laser light at a specific wavelength, making them ideal for precise cutting or engraving. |
Power (P) | The total energy emitted per unit of time. Higher laser power allows for faster material removal or processing, but it must be controlled carefully to avoid damage to the workpiece. |
Beam Profile | Describes the spatial intensity distribution of the laser beam. The shape of the beam profile affects the energy distribution over the processed area, which can influence the accuracy and quality of the machining. Common profiles include Gaussian and top-hat. |
Divergence | Refers to the spreading of the laser beam as it propagates through space. Low divergence is desirable for focused, precise material processing. |
Pulse Duration | For pulsed lasers, the pulse duration is the duration of each laser pulse. Short pulses can improve material processing precision, while longer pulses might be more suitable for certain applications like Surface Cleaning and Preparation. |
Coherence | The property of the laser beam is where all photons oscillate in phase with each other. Coherence is important for certain applications that involve interference effects like holography, laser ablation patterning, and surface structuring. |
Spatial Mode | Characterizes the distribution of the laser’s electric field in the transverse plane. Different spatial modes can influence the quality of the focused beam and the precision of material removal. |
Polarization | Describes the orientation of the electric field vector of the laser beam. Polarization affects how the laser interacts with certain materials and optical components. |
Spectral Width | The range of wavelengths present in the laser emission. A narrow spectral width is preferred for certain precision applications, while a broader spectrum might be suitable for others, like surface cleaning and treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopal, P.M.; Kavimani, V.; Gupta, K.; Marinkovic, D. Laser-Based Manufacturing of Ceramics: A Review. Micromachines 2023, 14, 1564. https://doi.org/10.3390/mi14081564
Gopal PM, Kavimani V, Gupta K, Marinkovic D. Laser-Based Manufacturing of Ceramics: A Review. Micromachines. 2023; 14(8):1564. https://doi.org/10.3390/mi14081564
Chicago/Turabian StyleGopal, Pudhupalayam Muthukutti, Vijayananth Kavimani, Kapil Gupta, and Dragan Marinkovic. 2023. "Laser-Based Manufacturing of Ceramics: A Review" Micromachines 14, no. 8: 1564. https://doi.org/10.3390/mi14081564
APA StyleGopal, P. M., Kavimani, V., Gupta, K., & Marinkovic, D. (2023). Laser-Based Manufacturing of Ceramics: A Review. Micromachines, 14(8), 1564. https://doi.org/10.3390/mi14081564