A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Porous Zn–ZnO and ZnO Layers
2.2. Fabrication of the ZnO/QCM-Based UV-Sensitive Structure and Investigation of Its UV Sensor Characteristics
3. Results and Discussion
3.1. Two-Stage Technique for for Forming Porous ZnO Layers
3.2. Fabrication of the “Porous ZnO/QCM”-Based Structure and Characterization of Its UV Sensitivity
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2019, 54, 949–973. [Google Scholar] [CrossRef]
- Hassan, I.U.; Salim, H.; Naikoo, G.A.; Awan, T.; Dar, R.A.; Arshad, F.; Tabidi, M.A.; Das, R.; Ahmed, W.; Asiri, A.M.; et al. A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. J. Saudi Chem. Soc. 2021, 25, 101228. [Google Scholar] [CrossRef]
- Wu, F.; Bai, J.; Feng, J.; Xiong, S. Porous mixed metal oxides: Design, formation mechanism, and application in lithium-ion batteries. Nanoscale 2015, 7, 17211–17230. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G.; Tolstoy, V.P. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations—Part 2: Porous 2D Nanomaterials. Nanomaterials 2023, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Vitrey, A.; Alvarez, R.; Palmero, A.; González, M.U.; García-Martín, J.M. Fabrication of black-gold coatings by glancing angle deposition with sputtering. Beilstein J. Nanotechnol. 2017, 8, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melikhova, O.; Čížek, J.; Hruška, P.; Lukáča, F.; Novotný, M.; More-Chevalier, J.; Fitl, P.; Liedke, M.O.; Butterling, M.; Wagner, A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Pol. A 2020, 137, 222–226. [Google Scholar] [CrossRef]
- Hruška, P.; More-Chevalier, J.; Novotný, M.; Čížek, J.; Melikhova, O.; Fekete, L.; Poupon, M.; Bulíř, J.; Volfová, L.; Butterling, M.; et al. Effect of roughness and nanoporosity on optical properties of black and reflective Al films prepared by magnetron sputtering. J. Alloys Compd. 2021, 872, 159744. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.; He, X.; Cui, Z.; Fang, J.; Zhang, C.; Li, X.; Li, G.; Zhong, L.; Zhang, Y. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Opt. Laser Technol. 2021, 141, 107115. [Google Scholar] [CrossRef]
- More-Chevalier, J.; Yudin, P.V.; Cibert, C.; Bednyakov, P.; Fitl, P.; Valenta, J.; Novotny, M.; Savinov, M.; Poupon, M.; Zikmund, T.; et al. Black aluminum-coated Pt/Pb(Zr0.56Ti0.44)O3/Pt thin film structures for pyroelectric energy harvesting from a light source. J. Appl. Phys. 2019, 126, 214501. [Google Scholar] [CrossRef]
- Kim, S.-J.; Jung, P.-H.; Kim, W.; Lee, H.; Hong, S.-H. Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber. Sci. Rep. 2019, 9, 14859. [Google Scholar] [CrossRef] [Green Version]
- Alazzam, A.; Alamoodi, N.; Abutayeh, M.; Stiharu, I.; Nerguizian, V. Fabrication of Porous Gold Film Using Graphene Oxide as a Sacrificial Layer. Materials 2019, 12, 2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Xu, S.; Gao, M.; Lu, Y.; Liu, Y.; Sun, S.; Li, D. Synergistically Integrating Nickel Porous Nanosheets with 5d Transition Metal Oxides Enabling Efficient Electrocatalytic Overall Water Splitting. Inorg. Chem. 2021, 60, 8189–8199. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.; Arshad, F.; ul Haq, T.; Hussain, I.; Hussain, S.Z.; ur Rehman, H. Roles of Metal Oxide Nanostructure-Based Substrates in Sustainable Electrochemical Water Splitting: Recent Development and Future Perspective. ACS Appl. Nano Mater. 2023, 6, 1631–1647. [Google Scholar] [CrossRef]
- Wang, S.; Lan, B.; Gao, Y.; Xie, Y.; He, H.; Xiong, D.; Tian, G.; Yang, T.; Huang, J.; Ao, Y.; et al. Versatile MXene integrated assembly for piezoresistive micro-force sensing. View 2022, 3, 20220031. [Google Scholar] [CrossRef]
- Dai, B.; Gao, C.; Xie, Y. Flexible wearable devices for intelligent health monitoring. View 2022, 3, 20220027. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, H.-h.; Rana, D.; Jamwal, D.; Katoch, A. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications. Nanotechnology 2017, 28, 095502. [Google Scholar] [CrossRef]
- Gupta, P.K.; Khan, Z.H.; Solanki, P.R. One-Step Electrodeposited Porous ZnO Thin Film Based Immunosensor for Detection of Vibrio cholerae Toxin. J. Electrochem. Soc. 2016, 163, B309. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wei, P.; Wang, Y.; Zang, Y.; Gao, D.; Wang, G.; Bao, X. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 2023, 16, 1502–1510. [Google Scholar] [CrossRef]
- Qin, L.; Mawignon, F.J.; Hussain, M.; Ange, N.K.; Lu, S.; Hafezi, M.; Dong, G. Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review. Materials 2021, 14, 4083. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, B.; Zhang, Y.; Zhu, H.; Guo, Z. Strong Amphiphobic Porous Films with Oily-self-cleaning Property beyond Nature. Chem. Lett. 2014, 43, 1566–1568. [Google Scholar] [CrossRef] [Green Version]
- Muslimov, A.E.; Gadzhiev, M.K.; Kanevsky, V.M. Influence of Plasma Treatment Parameters on the Structural-Phase Composition, Hardness, Moisture-Resistance, and Raman-Enhancement Properties of Nitrogen-Containing Titanium Dioxide. Materials 2022, 15, 8514. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Jung, J.; Kim, J.; Lee, J.; Lee, H.S.; Kang, I.-S. Antireflective Transparent Conductive Oxide Film Based on a Tapered Porous Nanostructure. Micromachines 2020, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Laurenti, M.; Cauda, V. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications. Coatings 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gao, W.; Reeves, R.J. Zinc oxide films by thermal oxidation of zinc thin films. Surf. Coat. Technol. 2005, 198, 319–323. [Google Scholar] [CrossRef]
- Gazia, R.; Chiodoni, A.; Bianco, S.; Lamberti, A.; Quaglio, M.; Sacco, A.; Tresso, E.; Mandracci, P.; Pirri, C.F. An easy method for the room-temperature growth of spongelike nanostructured Zn films as initial step for the fabrication of nanostructured ZnO. Thin Solid Films 2012, 524, 107–112. [Google Scholar] [CrossRef]
- Abduev, A.K.; Akhmedov, A.K.; Asvarov, A.S.; Alikhanov, N.M.-R.; Emirov, R.M.; Muslimov, A.E.; Belyaev, V.V. Gas-phase clusterization of zinc during magnetron sputtering. Crystallogr. Rep. 2017, 62, 133–138. [Google Scholar] [CrossRef]
- Park, S.-Y.; Rho, S.-H.; Lee, H.-S.; Kim, K.-M.; Lee, H.-C. Fabrication of Highly Porous and Pure Zinc Oxide Films Using Modified DC Magnetron Sputtering and Post-Oxidation. Materials 2021, 14, 6112. [Google Scholar] [CrossRef]
- Asvarov, A.S.; Abduev, A.K.; Akhmedov, A.K.; Kanevsky, V.M.; Muslimov, A.E. UV-Sensitive Porous ZnO-Based Nanocrystalline Films. Crystallogr. Rep. 2018, 63, 994–997. [Google Scholar] [CrossRef]
- Roshchupkin, D.; Redkin, A.; Emelin, E.; Sakharov, S. Ultraviolet Radiation Sensor Based on ZnO Nanorods/La3Ga5SiO14 Microbalance. Sensors 2021, 21, 4170. [Google Scholar] [CrossRef]
- Saha, T.; Guo, N.; Ramakrishnan, N. A novel langasite crystal microbalance instrumentation for UV sensing application. Sens. Actuators A 2016, 252, 16–25. [Google Scholar] [CrossRef]
- Ma, X.-S.; Zhang, H.-D.; Li, G.-Y.; Guo, K.; Longy, Y.-Z. Electrospun zinc oxide nanofibers for UV sensing with quartz crystal microbalance technique. Int. J. Mod. Phys. B 2021, 35, 2150042. [Google Scholar] [CrossRef]
- Addabbo, T.; Fort, A.; Mugnaini, M.; Tani, M.; Vignoli, V.; Bruzzi, M. Quartz crystal microbalance sensors based on TiO2 nanoparticles for gas sensing. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Romanova, M.; More-Chevalier, J.; Novotny, M.; Pokorny, P.; Volfova, L.; Fitl, P.; Poplausks, R.; Dekhtyar, Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Phys. Status Solidi (B) 2022, 259, 2100467. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Dynowska, E.; Kolkovsky, V.; Dyczewski, J.; Wielgus, M.; Kamińska, E.; Piotrowska, A. From porous to dense thin ZnO films through reactive DC sputter deposition onto Si (100) substrates. Phys. Status Solidi (A) 2012, 209, 2463–2469. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1974; pp. 687–703. [Google Scholar]
- Alivov, Y.I.; Chernykh, A.V.; Chukichev, M.V.; Korotkov, R.Y. Thin polycrystalline zinc oxide films obtained by oxidation of metallic zinc films. Thin Solid Films 2005, 473, 241–246. [Google Scholar] [CrossRef]
- Aida, M.S.; Tomasella, E.; Cellier, J.; Jacquet, M.; Bouhssira, N.; Abed, S.; Mosbah, A. Annealing and oxidation mechanism of evaporated zinc thin films from zinc oxide powder. Thin Solid Films 2006, 515, 1494–1499. [Google Scholar] [CrossRef]
- Gupta, R.K.; Shridhar, N.; Katiyar, M. Structure of ZnO films prepared by oxidation of metallic Zinc. Mater. Sci. Semicond. Process. 2002, 5, 11–15. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.; Leem, J.-Y. Oxidation Temperature Effects on ZnO Thin Films Prepared from Zn Thin Films on Quartz Substrates. J. Nanosci. Nanotechnol. 2015, 15, 8460–8463. [Google Scholar] [CrossRef]
- Seeneevassen, S.; Kashan, M.A.M.; Lim, Y.M.; Ramakrishnan, N. Quartz Crystal Microbalance Based UVA and UVC Sensor. IEEE Sens. J. 2022, 22, 10454–10458. [Google Scholar] [CrossRef]
- Henderson, J. Electronic Devices: Concepts and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1991; p. 357. [Google Scholar]
- Peng, W.; Hea, Y.; Wen, C.; Ma, K. Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer. Sens. Actuators A 2012, 184, 34–40. [Google Scholar] [CrossRef]
- Pang, H.-F.; Fu, Y.-Q.; Li, Z.-J.; Li, Y.; Ma, J.-Y.; Placido, F.; Walton, A.J.; Zu, X.-T. Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36° Y-cut LiTaO3. Sens. Actuators A 2013, 193, 87–94. [Google Scholar] [CrossRef]
- Bai, S.; Wu, W.; Qin, Y.; Cui, N.; Bayerl, D.J.; Wang, X. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 2011, 21, 4464–4469. [Google Scholar] [CrossRef]
- Bian, X.; Jin, H.; Wang, X.; Dong, S.; Chen, G.; Luo, J.K.; Deen, M.J.; Qi, B. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure. Sci. Rep. 2015, 5, 9123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, S.S.; Rajpure, K.Y. High-performance UV detector based on Ga-doped zinc oxide thin films. Appl. Surf. Sci. 2011, 257, 9595–9599. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Young, S.-J.; Chu, T.-T.; Khosla, A.; Chiang, K.-Y.; Ji, L.-W. Improvement of the UV-Sensing Performance of Ga-Doped ZnO Nanostructures via a Wet Chemical Solution at Room Temperature. ECS J. Solid State Sci. Technol. 2021, 10, 127001. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Tsai, H.-M.; Chen, Y.-C. Improved Optoelectronic Characteristics of Ga-In co-Doped ZnO UV Photodetectors by Asymmetric Metal Contact Structure. Crystals 2022, 12, 746. [Google Scholar] [CrossRef]
- Abe, T.; Li, X. Dual-Channel Quartz-Crystal Microbalance for Sensing Under UV Radiation. IEEE Sens. J. 2007, 7, 321–322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asvarov, A.S.; Muslimov, A.E.; Makhmudov, S.S.; Kanevsky, V.M. A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique. Micromachines 2023, 14, 1584. https://doi.org/10.3390/mi14081584
Asvarov AS, Muslimov AE, Makhmudov SS, Kanevsky VM. A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique. Micromachines. 2023; 14(8):1584. https://doi.org/10.3390/mi14081584
Chicago/Turabian StyleAsvarov, Abil S., Arsen E. Muslimov, Soslan S. Makhmudov, and Vladimir M. Kanevsky. 2023. "A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique" Micromachines 14, no. 8: 1584. https://doi.org/10.3390/mi14081584
APA StyleAsvarov, A. S., Muslimov, A. E., Makhmudov, S. S., & Kanevsky, V. M. (2023). A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique. Micromachines, 14(8), 1584. https://doi.org/10.3390/mi14081584