Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review
Abstract
:1. Introduction
2. Power Semiconductor Devices
3. Junction Temperature Optical Sensing Techniques
3.1. IRC Sensing Technique
Year | Device | FS (Hz) | Pixel | CTH (µm) | ε | ΔT (°C) | Err | Ref. |
---|---|---|---|---|---|---|---|---|
2021 | SiC M. | 200 | - | - | 0.73 | 100–160 | ±1.25 K | [67] |
2021 | IGBT | 9 | - | - | - | 39–100 | - | [68] |
2020 | IGBT | 200 | - | - | ~1 | 70–140 | ±3 °C | [69] |
2017 | IGBT | 100 | - | 10–16 | - | 80–190 | ±2 °C | [70] |
2016 | IGBT | 160 | - | - | ~1 | 30–80 | ±5 °C | [71] |
2016 | IGBT | 50 | - | - | - | 35–60 | 3.4% | [72] |
2016 | IGBT | 106 | 48 × 4 | - | - | 25–50 | - | [73] |
2013 | IGBT | - | 1368 | 100 | 1 | 40–180 | ±0.12 K | [65] |
2012 | IGBT | 100 | - | - | 0.94 | 70–140 | <3% | [74] |
2010 | IGBT | 50 | 320 × 256 | - | ~1 | 40–70 | ±2 °C | [75] |
2007 | IGBT | 15 | - | 220 | ~1 | 35–60 | ±1 K | [66] |
3.2. TSOP Sensing Technique
3.3. FBG Sensing Technique
3.4. Summary
4. Method of Calibration
4.1. IRC Sensing Technique
4.2. TSOP Sensing Technique
4.3. FBG Sensing Technique
5. Future Recommendations
5.1. Distributed Temperature Sensing
5.2. Reduction in Response Delay
5.3. Automated Calibration and Intelligent Operational Prognosis (ACIOP)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Yang, Y.; Zhou, X. The application of power electronic switches in high voltage quick switching device. Procedia Eng. 2012, 29, 466–469. [Google Scholar] [CrossRef]
- Wang, B. Review of Power Semiconductor Device Reliability for Power Converters. CPSS Trans. Power Electron. Appl. 2017, 2, 101–117. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Dragicevic, T.; Davari, P. Applications of power electronics. Electronics 2019, 8, 465. [Google Scholar] [CrossRef]
- Almubarak, A.A. The Effects of Heat on Electronic Components. Int. J. Eng. Res. Appl. 2017, 7, 52–57. [Google Scholar] [CrossRef]
- Sathik, M.; Jet, T.K.; Gajanayake, C.J.; Simanjorang, R.; Gupta, A.K. Comparison of power cycling and thermal cycling effects on the thermal impedance degradation in IGBT modules. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 1170–1175. [Google Scholar]
- Bahman, A.S.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A 3-D-Lumped Thermal Network Model for Long-Term Load Profiles Analysis in High-Power IGBT Modules. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1050–1063. [Google Scholar] [CrossRef]
- Kovacevic, I.F.; Drofenik, U.; Kolar, J.W. New physical model for lifetime estimation of power modules. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 2106–2114. [Google Scholar]
- Shammas, N.Y.A. Present problems of power module packaging technology. Microelectron. Reliab. 2003, 43, 519–527. [Google Scholar] [CrossRef]
- Qian, Z.; Zhang, J.; Sheng, K. Status and development of power semiconductor devices and its applications. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2014, 34, 5149–5161. [Google Scholar] [CrossRef]
- Sathik, M.H.M.; Pou, J.; Prasanth, S.; Muthu, V.; Simanjorang, R.; Gupta, A.K. Comparison of IGBT junction temperature measurement and estimation methods-A review. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification, ACEPT 2017, Singapore, 24–26 October 2017; Volume 2017, pp. 1–8. [Google Scholar]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals [and] Applications; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Scheuermann, U.; Schmidt, R. Investigations on the VCE(T)-Method to Determine the Junction Temperature by Using the Chip Itself as Sensor. In Proceedings of the PCIM Europe 2009, Nuremberg, Germany, 12–14 May 2009. [Google Scholar]
- Chen, J.; Deng, E.; Xie, L.; Ying, X.; Huang, Y. Investigations on Averaging Mechanisms of Virtual Junction Temperature Determined by VCE (T) Method for IGBTs. IEEE Trans. Electron Devices 2020, 67, 1106–1112. [Google Scholar] [CrossRef]
- Brekel, W.; Duetemeyer, T.; Puk, G.; Infineon, O.S. Time Resolved In Situ Tvj Measurements of 6.5 kV IGBTs during Inverter Operation. In Proceedings of the PCIM Europe 2009, Nuremberg, Germany, 12–14 May 2009. [Google Scholar]
- Blackburn, D.L. Temperature measurements of semiconductor devices-A review. In Proceedings of the Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11 March 2004; Volume 20, pp. 70–80. [Google Scholar] [CrossRef]
- Zhang, K.; Iannuzzo, F. Measuring Temperature Swing with Optical Fibers during Power Cycling of Power Components. In Proceedings of the 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Kiel, Germany, 26–29 June 2022; pp. 1–4. [Google Scholar]
- van der Broeck, C.H.; Zeng, H.; Lorenz, R.D.; De Doncker, R.W. A test bench for thermal characterization of igbt power modules over mission profiles. In Proceedings of the PCIM Europe 2018, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 455–462. [Google Scholar]
- Ikeda, M.; Matsunami, H. Free exciton luminescence in 3C, 4H, 6H, and 15R SiC. Phys. Status Solidi 1980, 58, 657–663. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Sun, J.; Yang, C.; Ren, X.; Li, J.; Zhang, D. Research on a fiber Bragg grating temperature measurement method for inter-satellite laser link. Rev. Sci. Instrum. 2020, 91, 015007. [Google Scholar] [CrossRef]
- Vilchis-Rodriguez, D.S.; Chen, S.; Djurović, S.; Barnes, M.; McKeever, P.; Jia, C. IGBT finite element model for fibre bragg grating sensor installation analysis. In Proceedings of the 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022), Newcastle, UK, 21–23 June 2022; pp. 184–188. [Google Scholar]
- Niu, H.; Lorenz, R.D. Evaluating different implementations of online junction temperature sensing for switching power semiconductors. IEEE Trans. Ind. Appl. 2017, 53, 391–401. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, Y.; Boroyevich, D.; Ngo, K.D.T.; Mattavelli, P.; Rajashekara, K. A 1200-V, 60-A SiC MOSFET Multichip Phase-Leg Module for High-Temperature, High-Frequency Applications. IEEE Trans. Power Electron. 2014, 29, 2307–2320. [Google Scholar] [CrossRef]
- Trentin, A.; Zanchetta, P.; Wheeler, P.W.; Clare, J.C. Performance evaluation of high-voltage 1.2 kV silicon carbide metal oxide semi-conductor field effect transistors for three-phase buck-type PWM rectifiers in aircraft applications. IET Power Electron. 2012, 5, 1873–1881. [Google Scholar] [CrossRef]
- Mazumder, S.K.; Jedraszczak, P. Evaluation of a SiC dc/dc converter for plug-in hybrid-electric-vehicle at high inlet-coolant temperature. IET Power Electron. 2011, 4, 708–714. [Google Scholar] [CrossRef]
- Nitzsche, M.; Cheshire, C.; Fischer, M.; Ruthardt, J.; Roth-Stielow, J. Comprehensive comparison of a SiC MOSFET and Si IGBT based inverter. In Proceedings of the PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019; pp. 1828–1834. [Google Scholar]
- Ishikawa, K.; Ogawa, K.; Onose, H.; Kameshiro, N.; Nagasu, M. Traction inverter that applies hybrid module using 3-kV SiC-SBDs. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 3266–3270. [Google Scholar]
- Ozpineci, B.; Chinthavali, M.S.; Tolbert, L.M. A 55 kW three-phase automotive traction inverter with SiC Schottky diodes. In Proceedings of the 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 7 September 2005; 6p. [Google Scholar]
- Bartsch, W.; Gediga, S.; Koehler, H.J.; Sommer, R.; Zaiser, G. Comparison of Si- and SiC-powerdiodes in 100A-modules. In Proceedings of the 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–8. [Google Scholar]
- Kuang, Y.; Guo, Y.; Xiong, L.; Liu, W. Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey. Photonic Sens. 2018, 8, 320–331. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P. An Online Junction Temperature Monitoring Method for SiC MOSFETs Based on a Novel Gate Conduction Model. IEEE Trans. Power Electron. 2021, 36, 11087–11096. [Google Scholar] [CrossRef]
- Shi, B.; Feng, S.; Shi, L.; Shi, D.; Zhang, Y.; Zhu, H. Junction Temperature Measurement Method for Power mosfets Using Turn-On Delay of Impulse Signal. IEEE Trans. Power Electron. 2018, 33, 5274–5282. [Google Scholar] [CrossRef]
- Sheng, K. Maximum junction temperatures of SiC power devices. IEEE Trans. Electron Devices 2009, 56, 337–342. [Google Scholar] [CrossRef]
- Yin, S.; Tseng, K.J.; Simanjorang, R.; Tu, P. Experimental Comparison of High-Speed Gate Driver Design for 1.2-kV/120-A Si IGBT and SiC MOSFET Modules. IET Power Electron. 2017, 10, 979–986. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Wu, X.; Sheng, K. Evaluation of reverse recovery characteristic of silicon carbide metal–oxide–semiconductor field-effect transistor intrinsic diode. IET Power Electron. 2016, 9, 969–976. [Google Scholar] [CrossRef]
- Dbeiss, M.; Avenas, Y.; Zara, H. Comparison of the electro-thermal constraints on SiC MOSFET and Si IGBT power modules in photovoltaic DC/AC inverters. Microelectron. Reliab. 2017, 78, 65–71. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.; Wu, X.; Sheng, K. Comparison and analysis of short circuit capability of 1200V single-chip SiC MOSFET and Si IGBT. In Proceedings of the 2016 International Forum on Wide Bandgap Semiconductors China, IFWS 2016-Conference Proceedings, Beijing, China, 15–17 November 2016; Volume 3, pp. 42–45. [Google Scholar]
- Cengiz, C.; Azarifar, M.; Arik, M. A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes. Micromachines 2022, 13, 1615. [Google Scholar] [CrossRef] [PubMed]
- Kuball, M.; Hayes, J.M.; Uren, M.J.; Martin, I.; Birbeck, J.C.H.; Balmer, R.S.; Hughes, B.T. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett. 2002, 23, 7–9. [Google Scholar] [CrossRef]
- Abstreiter, G. Micro-Raman spectroscopy for characterization of semiconductor devices. Appl. Surf. Sci. 1991, 50, 73–78. [Google Scholar] [CrossRef]
- Ireland, P.T.; Neely, A.J.; Gillespie, D.R.H.; Robertson, A.J. Turbulent heat transfer measurements using liquid crystals. Int. J. Heat Fluid Flow 1999, 20, 355–367. [Google Scholar]
- Ireland, P.T.; Jones, T.V. The response time of a surface thermometer employing encapsulated thermochromic liquid crystals. J. Phys. E 1987, 20, 1195–1199. [Google Scholar]
- Ju, S.; Kading, O.W.; Leung, Y.-K.; Wong, S.S.; Goodson, K.E. Short-timescale thermal mapping of semiconductor devices. IEEE Electron Device Lett. 1997, 18, 169–171. [Google Scholar]
- Ju, Y.S.; Goodson, K.E. Short-timescale thermal mapping of interconnects. In Proceedings of the 1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual, Denver, CO, USA, 8–10 April 1997; pp. 320–324. [Google Scholar]
- Oxley, C.; Hopper, R.; Prime, D.; Leaper, M.C.; Evans, G.A.; Levick, A.P. Probe Propels IR Thermal Microscopy to a New Level. 2011. Available online: https://compoundsemiconductor.net/article/87689/Probe_propels_IR_thermal_microscopy_to_a_new_level (accessed on 26 July 2023).
- Wang, R.; Sabate, J.; Mainali, K.; Sadilek, T.; Losee, P.; Singh, Y. SiC Device Junction Temperature Online Monitoring. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, Portland, OR, USA, 23–27 September 2018; pp. 387–392. [Google Scholar]
- Zarebski, J.; Krzysztof Górecki, D.B. A New Electrothermal Model of the Power MOSFET for SPICE. In Proceedings of the 11th International Conference Mixed Design of Integrated Circuits and Systems, Szczecin, Poland, 24–26 June 2004; pp. 1–5. [Google Scholar]
- Ren, H.; Ran, L.; Liu, X.; Liu, L.; Djurovic, S.; Jiang, H.; Barnes, M.; Mawby, P. Quasi-distributed Temperature Detection of Press Pack IGBT Power Module Using FBG Sensing. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 4981–4992. [Google Scholar] [CrossRef]
- Petrosyants, K.O.; Kharitonov, I.A. Non-destructive testing of electronic components overheating using infrared thermography. In Proceedings of the VIII International Workshop on Non-Destructive Tests, Prague, Czech Republic, 12–14 October 2015; pp. 12–14. [Google Scholar]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef]
- Vellvehi, M.; Perpiñà, X.; Lauro, G.L.; Perillo, F.; Jordà, X. Irradiance-based emissivity correction in infrared thermography for electronic applications. Rev. Sci. Instrum. 2011, 82, 114901. [Google Scholar] [CrossRef]
- Song, F.F.; He, X.; En, Y. The function of IR thermal imaging technology for device and circuit reliability research. In Proceedings of the 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2014, Chengdu, China, 18–20 June 2014; pp. 2–3. [Google Scholar]
- Urciuoli, D.; Green, R.; Lelis, A.; Ibitayo, D. Performance of a dual, 1200 V, 400 A, silicon-carbide power MOSFET module. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010-Proceedings, Atlanta, GA, USA, 12–16 September 2010; pp. 3303–3310. [Google Scholar]
- Corfa, A.; Gasse, A.; Bernabé, S.; Ribot, H. Analytical and FEM simulations of the thermal spreading effect in LED modules and IR thermography validation. In Proceedings of the 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010, Bordeaux, France, 26–28 April 2010; pp. 1–8. [Google Scholar]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Xiong, B.; Li, T. MEMS-based thermoelectric infrared sensors: A review. Front. Mech. Eng. 2017, 12, 557–566. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared Detectors; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Zhang, Y.C.; Wang, Z.K.; Fu, X.B.; Yan, F.; Kong, T. An experimental method for improving temperature measurement accuracy of infrared thermal imager. Infrared Phys. Technol. 2019, 102, 103020. [Google Scholar] [CrossRef]
- Chrzanowski, K. Influence of object-system distance on accuracy of remote temperature measurement with IR systems. Infrared Phys. Technol. 1995, 36, 703–713. [Google Scholar]
- An, J.; Jing, H.; Xu, L.; Zhou, C. A new method for measuring of welding thermal cycling with infrared thermal imager. J. Tianjin Univ. 2011, 2, 148–151. [Google Scholar]
- Würfel, P.; Finkbeiner, S.; Daub, E. Generalized Planck’s radiation law for luminescence via indirect transitions. Appl. Phys. A 1995, 60, 67–70. [Google Scholar] [CrossRef]
- Li, F. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev. 1995, 12, 225–253. [Google Scholar]
- Nguyen, T.X.B.; Rosser, K.; Chahl, J. A review of modern thermal imaging sensor technology and applications for autonomous aerial navigation. J. Imaging 2021, 7, 217. [Google Scholar] [CrossRef]
- Akbari, M.; Tavakoli Bina, M.; Bahman, A.S.; Eskandari, B.; Pouresmaeil, E.; Blaabjerg, F. An Extended Multilayer Thermal Model for Multichip IGBT Modules Considering Thermal Aging. IEEE Access 2021, 9, 84217–84230. [Google Scholar] [CrossRef]
- Pandey, P.; Oxley, C.; Hopper, R.; Ali, Z.; Duffy, A. Infra-red thermal measurement on a lowpower infra-red emitter in CMOS technology. IET Sci. Meas. Technol. 2019, 13, 25–28. [Google Scholar] [CrossRef]
- Dupont, L.; Avenas, Y.; Jeannin, P.O. Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 2013, 49, 1599–1608. [Google Scholar] [CrossRef]
- Brückner, T.; Bernet, S. Estimation and measurement of junction temperatures in a three-level voltage source converter. IEEE Trans. Power Electron. 2007, 22, 3–12. [Google Scholar] [CrossRef]
- Race, S.; Ziemann, T.; Kovacevic-Badstuebner, I.; Stark, R.; Tiwari, S.; Grossner, U. Design for Reliability of SiC Multichip Power Modules: The Effect of Variability. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May 2021–3 June 2021; pp. 399–402. [Google Scholar] [CrossRef]
- Chen, S.; Vilchis-Rodriguez, D.; Djurovic, S.; Barnes, M.; McKeever, P.; Jia, C. Direct on Chip Thermal Measurement in IGBT Modules Using FBG Technology-Sensing Head Interfacing. IEEE Sens. J. 2022, 22, 1309–1320. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, M.; Su, X.; Lu, K.; Wu, Z.; Yang, G. IGBT Junction Temperature Measurement under Active-Short-Circuit and Locked-Rotor Modes in New Energy Vehicles. IEEE Access 2020, 8, 114401–114412. [Google Scholar] [CrossRef]
- Baker, N.; Dupont, L.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. IR camera validation of IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron. 2017, 32, 3099–3111. [Google Scholar] [CrossRef]
- Weber, S.; Schlüter, M.; Borowski, D.; Mertens, A. Simple analog detection of turn-off delay time for IGBT junction temperature estimation. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar] [CrossRef]
- Eleffendi, M.A.; Johnson, C.M. Application of Kalman Filter to Estimate Junction Temperature in IGBT Power Modules. IEEE Trans. Power Electron. 2016, 31, 1576–1587. [Google Scholar] [CrossRef]
- Wu, R.; Wang, H.; Pedersen, K.B.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations. IEEE Trans. Ind. Appl. 2016, 52, 3306–3314. [Google Scholar] [CrossRef]
- Avenas, Y.; Dupont, L. Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions-Comparison with infrared measurements. Microelectron. Reliab. 2012, 52, 2617–2626. [Google Scholar] [CrossRef]
- Musallam, M.; Johnson, C.M. Real-time compact thermal models for health management of power electronics. IEEE Trans. Power Electron. 2010, 25, 1416–1425. [Google Scholar] [CrossRef]
- Zakgeim, A.; Chernyakov, A.; Aladov, A. Infrared Micro Thermography of High-Power AlInGaN LEDs Using High Emissivity (black) Coating in IR and Transparent in the Visible Spectral Region. Quant. InfraRed Thermogr. J. 2019, 16, 172–180. [Google Scholar]
- Hopper, R.H.; Haneef, I.; Ali, S.Z.; Udrea, F.; Oxley, C.H. Improved infrared thermal imaging of a CMOS MEMS device. In Proceedings of the 16th International Workshop on Thermal Investigations of ICs and Systems, THERMINIC 2010, Barcelona, Spain, 6–8 October 2010; pp. 122–126. [Google Scholar]
- Schuermeyer, F.; Fitch, R.; Dettmer, R.; Gillespie, J.; Bozada, C.; Nakano, K.; Sewell, J.; Ebel, J.; Jenkins, T.; Liou, L.L. Thermal studies on heterostructure bipolar transistors using electroluminescence. In Proceedings of the 2000 IEEE/Cornell Conference on High Performance Devices (Cat. No.00CH37122), Ithaca, NY, USA, 7–9 August 2000; pp. 45–50. [Google Scholar] [CrossRef]
- Kim, Q.; Stark, B.; Kayali, S. Novel, high resolution, non-contact channel temperature measurement technique. In Proceedings of the 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173), Reno, NV, USA, 31 March–2 April 1998; pp. 108–112. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Courier Corporation: Chelmsford, MA, USA, 1975. [Google Scholar]
- Landesman, J.P.; Floriot, D.; Martin, E.; Bisaro, R.; Delage, S.L.; Braun, P. Temperature distributions in III-V micro-wave power transistors using spatially resolved photoluminescence mapping. In Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No. 00TH8474), Cancun, Mexico, 17 March 2000; pp. 1471–1488. [Google Scholar]
- Hall, D.C.; Goldberg, L.; Mehuys, D. Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe. Appl. Phys. Lett. 1992, 61, 384–386. [Google Scholar] [CrossRef]
- Kalker, S.; Van Der Broeck, C.H.; Ruppert, L.A.; De Doncker, R.W. Next Generation Monitoring of SiC mosfets Via Spectral Electroluminescence Sensing. IEEE Trans. Ind. Appl. 2021, 57, 2746–2757. [Google Scholar] [CrossRef]
- Dawson, D.E.; Gupta, A.K.; Salib, M.L. CW Measurement of HBT Thermal Resistance. IEEE Trans. Electron Devices 1992, 39, 2235–2239. [Google Scholar] [CrossRef]
- Lu, H. A comprehensive Optical Characterization Method for High-Performance n-p-n AlGaAs-GaAs Heterojunction Bipolar Transistors. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 1030–1036. [Google Scholar] [CrossRef]
- Cai, X.; Li, S.; Kang, J. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers. Superlattices Microstruct. 2016, 97, 1–7. [Google Scholar] [CrossRef]
- Winkler, J.; Homoth, J.; Kallfass, I. Electroluminescence in power electronic applications: Utilization of p-n Junctions in Power Semiconductors as unintentional Light Emitting Diodes for Current and Temperature Sensing. In Proceedings of the 31st International Electric Vehicles Symposium & International Electric Vehicle, Kobe, Japan, 1–3 October 2018. [Google Scholar]
- Shalish, I.; Altfeder, I.B.; Narayanamurti, V. Observations of conduction-band structure of 4 H-and 6 H-SiC. Phys. Rev. B 2002, 65, 73104. [Google Scholar] [CrossRef]
- Dolny, G.M.; Sapp, S.; Elbanhaway, A.; Wheatley, C.F. The influence of body effect and threshold voltage reduction on trench MOSFET body diode characteristics. IEEE Int. Symp. Power Semicond. Devices ICs 2004, 16, 217–220. [Google Scholar] [CrossRef]
- Winkler, J.; Homoth, J.; Kallfass, I. Utilization of parasitic luminescence from power semiconductor devices for current sensing. In Proceedings of the PCIM Europe 2018, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 760–767. [Google Scholar]
- Kuznetsov, N.I.; Zubrilov, A.S. Deep centers and electroluminescence in 4HSiC diodes with a p-type base region. Mater. Sci. Eng. B 1995, 29, 181–184. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, X.; Liu, J.; Mocevic, S.; Dong, D.; Zhang, Y. Third Quadrant Conduction Loss of 1.2–10 kV SiC MOSFETs: Impact of Gate Bias Control. IEEE Trans. Power Electron. 2021, 36, 2033–2043. [Google Scholar] [CrossRef]
- Liu, B.; Chen, G.; Lin, H.C.; Zhang, W.; Liu, J. Prediction of IGBT junction temperature using improved cuckoo search-based extreme learning machine. Microelectron. Reliab. 2021, 124, 114267. [Google Scholar] [CrossRef]
- Puschkarsky, K.; Reisinger, H.; Aichinger, T.; Gustin, W.; Grasser, T. Threshold voltage hysteresis in SiC MOSFETs and its impact on circuit operation. In Proceedings of the 2017 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 8–12 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Ruppert, L.A.; Kalker, S.; van der Broeck, C.H.; De Doncker, R.W. Analyzing spectral electroluminescence sensitivities of sic mosfets and their impact on power device monitoring. In Proceedings of the PCIM Europe Digital Days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021; pp. 137–144. [Google Scholar]
- Kalker, S.; Van Der Broeck, C.H.; De Doncker, R.W. Utilizing Electroluminescence of SiC MOSFETs for Unified Junction-Temperature and Current Sensing. In Proceedings of the Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, New Orleans, LA, USA, 15–19 March 2020; Volume 2020, pp. 1098–1105. [Google Scholar] [CrossRef]
- Strel’chuk, A.M.; Kalinina, E.V.; Lebedev, A.A. Temperature dependence of the band-edge injection electroluminescence of 4H-SiC pn structure. Mater. Sci. Forum 2013, 740–742, 569–572. [Google Scholar] [CrossRef]
- Strel’chuk, A.M.; Kuz’michev, Y.S.; Shtel’makh, K.F. Features of the Band-Edge Injection Electroluminescence in 4H-SiC pn Structures. Mater. Sci. Forum 2015, 821–823, 289–292. [Google Scholar] [CrossRef]
- Lebedev, A.A. Deep level centers in silicon carbide: A review. Semiconductors 1999, 33, 107–130. [Google Scholar] [CrossRef]
- Sridhara, S.G.; Clemen, L.L.; Devaty, R.P.; Choyke, W.J.; Larkin, D.J.; Kong, H.S.; Troffer, T.; Pensl, G. Photoluminescence and transport studies of boron in 4H SiC. J. Appl. Phys. 1998, 83, 7909–7919. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Ber, B.Y.; Seredova, N.V.; Kazantsev, D.Y.; Kozlovski, V.V. Radiation-stimulated photoluminescence in electron irradiated 4H-SiC. J. Phys. D Appl. Phys. 2015, 48, 485106. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ousten, J.P.; Lallemand, R.; Khatir, Z. Power cycling tests in high temperature conditions of SiC-MOSFET power modules and ageing assessment. In Proceedings of the CIPS 2016-9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 8–10 March 2019. [Google Scholar]
- Kim, M.K.; Yoon, S.W. Thermal impedance characterization using optical measurement assisted by multi-physics simulation for multi-chip SiC MOSFET module. Micromachines 2020, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Luo, H.; Li, C.; Li, W.; Yang, H.; He, X. Online Junction Temperature Extraction of SiC Power mosfets with Temperature Sensitive Optic Parameter (TSOP) Approach. IEEE Trans. Power Electron. 2019, 34, 10143–10152. [Google Scholar] [CrossRef]
- Li, C.; Lu, Z.; Wu, H.; Li, W.; He, X.; Li, S. Junction temperature measurement based on electroluminescence effect in body diode of SiC power MOSFET. In Proceedings of the Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, Anaheim, CA, USA, 17–21 March 2019; Volume 2019, pp. 338–343. [Google Scholar]
- Ruppert, L.A.; Kalker, S.; De Doncker, R.W. Junction-Temperature Sensing of Paralleled SiC MOSFETs Utilizing Temperature Sensitive Optical Parameters. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 5597–5604. [Google Scholar] [CrossRef]
- Luo, H.; Mao, J.; Li, C.; Iannuzzo, F.; Li, W.; He, X. Online junction temperature and current simultaneous extraction for SiC MOSFETs with electroluminescence effect. IEEE Trans. Power Electron. 2022, 37, 21–25. [Google Scholar] [CrossRef]
- Winkler, J.; Homoth, J.; Kallfass, I. Electroluminescence-Based Junction Temperature Measurement Approach for SiC Power MOSFETs. IEEE Trans. Power Electron. 2020, 35, 2990–2998. [Google Scholar] [CrossRef]
- Susinni, G.; Rizzo, S.A.; Iannuzzo, F.; Raciti, A. A non-invasive SiC MOSFET Junction temperature estimation method based on the transient light Emission from the intrinsic body diode. Microelectron. Reliab. 2020, 114, 113845. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Luo, H.; Iannuzzo, F. Investigating SiC MOSFET body diode’s light emission as temperature-sensitive electrical parameter. Microelectron. Reliab. 2018, 88–90, 627–630. [Google Scholar] [CrossRef]
- Mai, J.; Zhang, S.; Zhu, P.; Zhu, Q.; Yang, R. Experimental Study on Surface Temperature Measurement of IGBT Module. In Proceedings of the 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO 2021, Guangzhou, China, 20–22 May 2021; pp. 15–18. [Google Scholar]
- Liu, Z.; Chen, N.; Liu, Y.; Chen, Z.; Pang, F.; Wang, T. Monitoring Junction Temperature of RF MOSFET under Its Working Condition Using Fiber Bragg Grating. Micromachines 2022, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Bazzo, J.P.; Lukasievicz, T.; Vogt, M.; De Oliveira, V.; Kalinowski, H.J.; Da Silva, J.C.C. Thermal characteristics analysis of an IGBT using a fiber Bragg grating. Opt. Lasers Eng. 2012, 50, 99–103. [Google Scholar] [CrossRef]
- Chen, S.; Vilchis-Rodriguez, D.; Djurovic, S.; Barnes, M.; McKeever, P.; Jia, C. FBG Head Size Influence on Localized On-chip Thermal Measurement in IGBT Power Modules. IEEE Sens. J. 2022, 22, 21684–21693. [Google Scholar] [CrossRef]
- Mohammed, A.; Hu, B.; Hu, Z.; Djurović, S.; Ran, L.; Barnes, M.; Mawby, P.A. Distributed Thermal Monitoring of Wind Turbine Power Electronic Modules Using FBG Sensing Technology. IEEE Sens. J. 2020, 20, 9886–9894. [Google Scholar] [CrossRef]
- Mohammed, A.; Djurovic, S. FBG Thermal Sensing Features for Hot Spot Monitoring in Random Wound Electric Machine Coils. IEEE Sens. J. 2017, 17, 3058–3067. [Google Scholar] [CrossRef]
- Afiq, M.I.; Tamchek, N.; Rosdi, M.A.H.; Dambul, K.D.; Selvaraj, J.; Abd, N.R.; Reza, S.S.; Rafiq, F.M.A. A fiber Bragg grating-bimetal temperature sensor for solar panel inverters. Sensors 2011, 11, 8665–8673. [Google Scholar] [CrossRef]
- Tamchek, N.; Michael, A.P.; Sandoghchi, S.R.; Hassan, M.R.; Dambul, K.D.; Selvaraj, J.; Rahim, N.A.; Mahamd Adikan, F.R. Design, characterization and implementation of a fiber bragg grating temperature sensor for application in solar power electronic inverters. Appl. Sol. Energy (Engl. Transl. Geliotekhnika) 2011, 47, 184–188. [Google Scholar] [CrossRef]
- Saidi Reddy, P.; Sai Prasad, R.L.N.; Srimannarayana, K.; Sai Shankar, M.; Sen Gupta, D. A novel method for high temperature measurements using fiber Bragg grating sensor. Opt. Appl. 2010, 40, 685–692. [Google Scholar]
- Wu, W.; Qin, Z.; Liu, X.; Chen, T. Investigation on low-temperature characteristics of FBG sensors and the technology to enhance sensitivity. In Proceedings of the Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 8–12 December 2010; pp. 310–311. [Google Scholar] [CrossRef]
Characteristics | Optical | Electrical | Physical |
---|---|---|---|
Measurand | Light Signal | Electrical Parameters | Physical Quantities |
EMI Immunity | Yes | No | Yes |
Physical Contact | Maybe | Yes | Yes |
Invasive | No | Yes | Yes |
Accuracy | High | Moderate | High |
Complexity | No | Maybe | No |
In-situ Sensing | Yes | Yes | No |
Response Time | Moderate | Fast | Poor |
Cost | Low | High | Low |
Key Benefits | Challenges |
---|---|
|
|
|
|
|
|
|
|
Year | Device | I (A) | λ (nm) | S | Err | ΔT | Contribution | Ref. |
---|---|---|---|---|---|---|---|---|
2022 | SiC M. | 3–18 | 390/510 | - | ±3 °C | 50–130 °C | Decoupled intensity peaks. | [107] |
2021 | SiC M. | 14 | 360/420 | - | 1.5 °C | 45–105 °C | Impact of EL biasing and BTI | [95] |
2021 | SiC M. | 2–12 | - | - | 2.18 K | 10–120 °C | Simultaneous device Temperature and current EL extraction | [106] |
2020 | SiC M. | 20, 80 | 380/480 | - | - | 30–150 °C | Peak spectral extraction | [108] |
2020 | SiC M. | 5, 20 | 390/510 | - | 1.2 °C | 10–90 °C | Multiple photodetection | [96] |
2020 | SiC M. | 4–11 | 380 | 0.10 mV/°C | 3.9 °C | 40–100 °C | Embeddable detector | [109] |
2019 | SiC M. | 5 | - | 3.2 mV/K | - | 30–150 °C | Intensity-temperature model | [105] |
2019 | SiC M. | 20, 25 | 383/485 | 1.53 V/°C | ±5 °C | 95–135 °C | Temperature transient | [104] |
2018 | SiC M. | 5 | 500 | - | - | 30–130 °C | Photomultiplier for detection | [87] |
2018 | SiC M. | 5–12 | 387 | - | - | 25–100 °C | Simple photodetector | [110] |
2015 | SiC M. | 16 | 420/390 | 290–800 K | EL—temperature profile | [98] | ||
2013 | SiC M. | 9 | 480/390 | 290–800 K | Diffusion current in SiC structure | [97] |
Key Benefits | Challenges |
---|---|
|
|
|
|
|
|
Year | Device | λ (nm) | FS (Hz) | Sensor Casing | Sensitivity (pm/°C) | L (mm) | Err | ΔT (°C) | Key Features | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
2022 | IGBT-PI | 1540 | 1 M | Teflon tube | 11.7 | 3 | 0.03 °C | 160 | Sensor head interface | [68] |
2022 | MOSFET | 1510–1590 | 1 k | 14, 21 | 15 | ±0.5 K | - | Thermal model for duty cycles | [112] | |
2022 | IGBT | 1550 | 2 k | - | 13 | 1–5 | ±0.1 °C | 40–67 | Head length influence | [114] |
2022 | IGBT-PI | 1550 | 100 | Tube Metal Plate | 10.2, 10.4, 14.7 | - | - | 175 | FBG housing effect | [47] |
2021 | IGBT | 1545 | - | Tube | - | 15 | - | - | Transient temperature monitoring | [111] |
2020 | IGBT | 1550 | 2.5 k | Tube | 10.9 | 5 | - | 25–95 | Steady and dynamic response | [115] |
2017 | IGBT | 1530 | 100 | Teflon tube | - | 5 | 0.48 °C | 40–180 | Influence of vibration | [116] |
2012 | IGBT | - | 2 k | - | - | - | ±0.02 °C | <150 | RC model | [113] |
2011 | IGBT-SI | 1550 | Metal strip | 14 | 26–90 | Established FBG sensitivity threshold | [117] | |||
2011 | IGBT-SI | 1555 | - | Metal sheet | - | - | - | 0–80 | Interface conductivity | [118] |
2010 | - | 1549 | 10 | 11.4 | 5 | 30–900 | High-temperature sensing | [119] | ||
2010 | - | 1530 | Steel Tube | 21 28 | - | - | - | FBG sensitivity enhancement | [120] |
Key Benefits | Challenges |
---|---|
|
|
|
|
|
|
Features | IRC | TSOP | FBG |
---|---|---|---|
Operation principle | Infrared radiation | Photon extraction | Wavelength shift |
Physical contact | No | Yes | Yes |
Accuracy | High | Moderate | High |
Signal processing | Moderate | Complex | Simple |
Noise | High | Moderate | Low |
Temperature range | −40 to 250 °C | 25 to 140 °C | −50 to 956 °C |
Calibration | One-time | System-dependent | One-time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa, R.; Mirza, J.; Ghafoor, S.; Mustafa Khan, M.Z.; Qureshi, K.K. Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review. Micromachines 2023, 14, 1636. https://doi.org/10.3390/mi14081636
Isa R, Mirza J, Ghafoor S, Mustafa Khan MZ, Qureshi KK. Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review. Micromachines. 2023; 14(8):1636. https://doi.org/10.3390/mi14081636
Chicago/Turabian StyleIsa, Ridwanullahi, Jawad Mirza, Salman Ghafoor, Mohammed Zahed Mustafa Khan, and Khurram Karim Qureshi. 2023. "Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review" Micromachines 14, no. 8: 1636. https://doi.org/10.3390/mi14081636
APA StyleIsa, R., Mirza, J., Ghafoor, S., Mustafa Khan, M. Z., & Qureshi, K. K. (2023). Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review. Micromachines, 14(8), 1636. https://doi.org/10.3390/mi14081636