Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Design of Experiment (DoE)
2.3. Fabrication and Characterisation
3. Results and Discussion
3.1. ANOVA Results
3.1.1. Relative Density Analysis
3.1.2. Surface Roughness Analysis
3.2. Process Optimisation
3.3. Model Validation
3.4. Relative Density and the Energy Density
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouassil, S.-E.M.; El Magri, A.; Vanaei, H.R.; Vaudreuil, S. Investigating the effect of printing conditions and annealing on the porosity and tensile behavior of 3D-printed poly-etherimide material in Z-direction. J. Appl. Polym. Sci. 2023, 140, e53353. [Google Scholar] [CrossRef]
- Gatto, M.L.; Santoni, A.; Santecchia, E.; Spigarelli, S.; Fiori, F.; Mengucci, P.; Cabibbo, M. The Potential of Duplex Stainless Steel Processed by Laser Powder Bed Fusion for Biomedical Applications: A Review. Metals 2023, 13, 949. [Google Scholar] [CrossRef]
- Larini, F.; Casati, R.; Marola, S.; Vedani, M. Microstructural Evolution of a High-Strength Zr-Ti-Modified 2139 Aluminum Alloy for Laser Powder Bed Fusion. Metals 2023, 13, 924. [Google Scholar] [CrossRef]
- Gatto, A.; Cappelletti, C.; Defanti, S.; Fabbri, F. The Corrosion Behaviour of Additively Manufactured AlSi10Mg Parts Compared to Traditional Al Alloys. Metals 2023, 13, 913. [Google Scholar] [CrossRef]
- Theeda, S.; Jagdale, S.H.; Ravichander, B.B.; Kumar, G. Optimization of Process Parameters in Laser Powder Bed Fusion of SS 316L Parts Using Artificial Neural Networks. Metals 2023, 13, 842. [Google Scholar] [CrossRef]
- Dejene, N.D.; Lemu, H.G. Current Status and Challenges of Powder Bed Fusion-Based Metal Additive Manufacturing: Literature Review. Metals 2023, 13, 424. [Google Scholar] [CrossRef]
- Rehman, A.U.; Ullah, A.; Liu, T.; Rehman, R.U.; Salamci, M.U. Additive manufacturing of Al2O3 ceramics with MgO/SiC contents by laser powder bed fusion process. Front. Chem. 2023, 11, 1034473. [Google Scholar] [CrossRef]
- Liu, C.K.C.A.; Leong, K.F. Properties of Test Coupons Fabricated by Selective Laser Melting. Key Eng. Mater. 2010, 447–448, 780–784. [Google Scholar]
- Mulhi, A.; Dehgahi, S.; Waghmare, P.; Qureshi, A.J. Process Parameter Optimization of 2507 Super Duplex Stainless Steel Additively Manufactured by the Laser Powder Bed Fusion Technique. Metals 2023, 13, 725. [Google Scholar] [CrossRef]
- Xue, M.; Chen, X.; Ji, X.; Xie, X.; Chao, Q.; Fan, G. Effect of Particle Size Distribution on the Printing Quality and Tensile Properties of Ti-6Al-4V Alloy Produced by LPBF Process. Metals 2023, 13, 604. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, M.; Zhu, J.; Tu, J.; Jiao, S. Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion. Metals 2023, 13, 496. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597. [Google Scholar] [CrossRef]
- Mumtaz, K.; Hopkinson, N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 2009, 15, 96–103. [Google Scholar] [CrossRef]
- Alamri, N.M.H.; Packianather, M.; Bigot, S. Predicting the porosity in selective laser melting parts using hybrid regression convolutional neural network. Appl. Sci. 2022, 12, 12571. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Starr, T.; Stucker, B. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 2013 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Zhao, N.; Parthasarathy, M.; Patil, S.; Coates, D.; Myers, K.; Zhu, H.; Li, W. Direct additive manufacturing of metal parts for automotive applications. J. Manuf. Syst. 2023, 68, 368–375. [Google Scholar] [CrossRef]
- Hassanin, H.; Al-Kinani, A.; Elshaer, A.; Elena, P.; Elsayed, M.A.; Essa, K. Stainless Steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J. Mater. Chem. B 2017, 5, 9384–9394. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Essa, K.; Ghazy, M.; Hassanin, H. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. Int. J. Adv. Manuf. Technol. 2020, 110, 2257–2268. [Google Scholar] [CrossRef]
- Bittredge, O.; Hassanin, H.; El-Sayed, M.A.; Eldessouky, H.M.; Alsaleh, N.A.; Alrasheedi, N.H.; Essa, K.; Ahmadein, M. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials 2022, 15, 3095. [Google Scholar] [CrossRef]
- Song, B.; Dong, S.; Zhang, B.; Liao, H.; Coddet, C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Des. 2012, 35, 120–125. [Google Scholar] [CrossRef]
- Yasa, E.; Deckers, J.; Kruth, J.P. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp. J. 2011, 17, 312–327. [Google Scholar] [CrossRef]
- Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.-C.; Scudino, S.; Eckert, J.J.A.M. Selective laser melting of in situ titanium–titanium boride composites: Processing. Microstruct. Mech. Prop. 2014, 76, 13–22. [Google Scholar]
- Sing, S.L.; Wiria, F.E.; Yeong, W.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robot. Comput. Manuf. 2018, 49, 170–180. [Google Scholar] [CrossRef]
- Hader, R.; Park, S.H. Slope-rotatable central composite designs. Technometrics 1978, 20, 413–417. [Google Scholar] [CrossRef]
- Elsayed, M.; Ghazy, M.; Youssef, Y.; Essa, K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyp. J. 2018, 25, 433–447. [Google Scholar] [CrossRef]
- El Magri, A.; El Mabrouk, K.; Vaudreuil, S.; Touhami, M. Experimental investigation and optimisation of printing parameters of 3D printed polyphenylene sulfide through response surface methodology. J. Appl. Polym. Sci. 2020, 138, 49625. [Google Scholar] [CrossRef]
- Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the properties of additively manufactured cellular structures using machine learning approaches. Adv. Eng. Mater. 2020, 22, 201901338. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Hofmann Group. Hofmann Innovation Group Website—Concept Laser. 2012. Available online: http://www.hofmann-innovation.com/en/technologies/direct-cusing-manufacturing.html (accessed on 14 August 2015).
- Bai, S.; Perevoshchikova, N.; Sha, Y.; Wu, X. The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019, 9, 583. [Google Scholar] [CrossRef]
- Pawlus, P.; Śmieszek, M. The influence of stylus flight on change of surface topography parameters. Precis. Eng. 2005, 29, 272–280. [Google Scholar] [CrossRef]
- Podulka, P.; Macek, W.; Branco, R.; Nejad, R.M. Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface. Materials 2023, 16, 1865. [Google Scholar] [CrossRef]
- Vorburger, T.V.; Rhee, H.-G.; Renegar, T.B.; Song, J.-F.; Zheng, A. Comparison of optical and stylus methods for measurement of surface texture. Int. J. Adv. Manuf. Technol. 2007, 33, 110–118. [Google Scholar] [CrossRef]
- Carter, L.N.; Essa, K.; Attallah, M.M. Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp. J. 2015, 21, 423–432. [Google Scholar] [CrossRef]
- Jamshidi, P.; Aristizabal, M.; Kong, W.; Villapun, V.; Cox, S.; Grover, L.; Attallah, M. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials 2020, 13, 2813. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Morgan, R.; Sutcliffe, C.J.; O’Neill, W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 2004, 39, 1195–1205. [Google Scholar] [CrossRef]
- Wang, D.; Jiale, L.; Xiongmian, W.; Dong, L. Study on Surface Roughness Improvement of Selective Laser Melted Ti6Al4V Alloy. Crystals 2023, 13, 306. [Google Scholar] [CrossRef]
- Kruth, J.P.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Snehashis, P.; Gorazd, L.; Vanja, K.; Drstvensek, I. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique. J. Manuf. Process. 2018, 35, 538–546. [Google Scholar]
- Snehashis, P.; Gorazd, L.; Radovan, H.; Viktoria, R.; Tomaz, B.; Vanja, K.; Drstvensek, I. As-fabricated surface morphologies of Ti-6Al-4 V samples fabricated by different laser processing parameters in Selective Laser Melting. Addit. Manuf. 2020, 33, 101147. [Google Scholar]
- Palmeri, D.; Buffa, G.; Getano, P.; Livan, F. Sample building orientation effect on porosity and mechanical properties in Selective Laser Melting of Ti6Al4V titanium alloy. Mater. Sci. Eng. A 2021, 830, 142306. [Google Scholar] [CrossRef]
- Olakanmi, E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al—Mg, and Al—Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013, 213, 1387–1405. [Google Scholar] [CrossRef]
- Sun, K.; Peng, W.; Yang, L.; Fang, L.J.M. Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy alloys. Metals 2020, 10, 292. [Google Scholar] [CrossRef]
Element | Al | V | Fe | C | O | N | H | Ti |
---|---|---|---|---|---|---|---|---|
wt. % | 5.9 | 3.98 | 0.158 | 0.006 | 0.160 | 0.004 | 0.002 | Bal. |
Parameter | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | 1 | α | |
Laser Power (W) | 100 | 125 | 150 | 175 | 200 |
Laser Scan Speed (mm/s) | 500 | 1125 | 1750 | 2375 | 3000 |
Hatch Space (µm) | 30 | 52.5 | 75 | 97.5 | 120 |
Run | Laser Power (W) | Scan Speed (mm/s) | Hatch Space (µm) | Energy Density (J/mm3) | Relative Density (SD) % | Top Roughness, (SD) µm | Side Roughness, (SD) µm |
---|---|---|---|---|---|---|---|
1 | 150 | 1750 | 75 | 38 | 99.20 (0.07) | 4.0 (0.23) | 4.2 (0.26) |
2 | 150 | 1750 | 30 | 95 | 99.24 (0.05) | 2.1 (0.17) | 7.7 (0.34) |
3 | 100 | 1750 | 75 | 25 | 98.10 (0.07) | 6.1 (0.22) | 7.8 (0.42) |
4 | 175 | 1125 | 52.5 | 99 | 99.75 (0.06) | 2.0 (0.17) | 6.9 (0.38) |
5 | 175 | 2375 | 52.5 | 47 | 99.50 (0.04) | 3.5 (0.25) | 3.7 (0.19) |
6 | 125 | 1125 | 52.5 | 71 | 99.46 (0.08) | 2.5 (0.18) | 8.2 (0.41) |
7 | 125 | 1125 | 97.5 | 38 | 99.49 (0.06) | 4.5 (0.22) | 6.3 (0.24) |
8 | 150 | 3000 | 75 | 22 | 97.90 (0.07) | 7.2 (0.32) | 2.7 (0.14) |
9 | 150 | 1750 | 75 | 38 | 99.30 (0.08) | 4.2 (0.21) | 4.2 (0.25) |
10 | 150 | 1750 | 75 | 38 | 99.31 (0.04) | 3.9 (0.18) | 4.5 (0.28) |
11 | 150 | 1750 | 120 | 24 | 98.38 (0.05) | 6.0 (0.23) | 2.7 (0.15) |
12 | 175 | 1125 | 97.5 | 53 | 99.81 (0.04) | 2.6 (0.14) | 5.3 (0.28) |
13 | 150 | 500 | 75 | 133 | 99.66 (0.03) | 1.5 (0.22) | 9.1 (0.48) |
14 | 125 | 2375 | 52.5 | 33 | 99.00 (0.05) | 4.7 (0.24) | 6.3 (0.32) |
15 | 200 | 1750 | 75 | 51 | 99.60 (0.06) | 1.8 (0.13) | 2.6 (0.18) |
16 | 175 | 2375 | 97.5 | 25 | 98.65 (0.07) | 5.1 (0.27) | 1.3 (0.25) |
17 | 125 | 2375 | 97.5 | 18 | 97.64 (0.05) | 7.3 (0.26) | 3.3 (0.35) |
Model Parameter | p-Value | ||
---|---|---|---|
Relative Density | Top Roughness | Side Roughness | |
P | 0.0006 | <0.0001 | <0.0001 |
V | <0.0001 | <0.0001 | <0.0001 |
h | 0.0043 | <0.0001 | <0.0001 |
PV | 0.2515 | N.A. | 0.0626 |
Ph | 0.4820 | N.A. | 0.4337 |
vh | 0.0110 | N.A. | 0.1197 |
P2 | N.A. | N.A. | 0.0351 |
v2 | N.A. | N.A. | 0.0020 |
h2 | N.A. | N.A. | 0.0333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanin, H.; El-Sayed, M.A.; Ahmadein, M.; Alsaleh, N.A.; Ataya, S.; Ahmed, M.M.Z.; Essa, K. Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion. Micromachines 2023, 14, 1642. https://doi.org/10.3390/mi14081642
Hassanin H, El-Sayed MA, Ahmadein M, Alsaleh NA, Ataya S, Ahmed MMZ, Essa K. Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion. Micromachines. 2023; 14(8):1642. https://doi.org/10.3390/mi14081642
Chicago/Turabian StyleHassanin, Hany, Mahmoud Ahmed El-Sayed, Mahmoud Ahmadein, Naser A. Alsaleh, Sabbah Ataya, Mohamed M. Z. Ahmed, and Khamis Essa. 2023. "Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion" Micromachines 14, no. 8: 1642. https://doi.org/10.3390/mi14081642
APA StyleHassanin, H., El-Sayed, M. A., Ahmadein, M., Alsaleh, N. A., Ataya, S., Ahmed, M. M. Z., & Essa, K. (2023). Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion. Micromachines, 14(8), 1642. https://doi.org/10.3390/mi14081642