Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review
Abstract
:1. Introduction
- Zero-dimensional (0D): These are monodispersed spherical nanoparticles with an average size of less than 10 nm, composed of a carbon-based core with several functional groups attached to the surface (such as hydroxyl, carboxyl, and amino groups [7]. Moreover, 0D carbons, such as carbon quantum dots and fullerenes, have been studied in different fields.
- One-dimensional (1D): This category includes 1D biomass materials with a fibrous or tubular structure.
- Two-dimensional (2D): These carbonaceous materials exhibit sp2 hybridization, offering high energy storage and conversion potential due to their abundant active surface edges and strong in-plane covalent bonding.
- Three-dimensional (3D): Biomass structures in 3D form possess well-connected and large pores, facilitating a continuous electron channel for efficient electrical contact, thereby accelerating the ion transfer.
2. Synthesis Methods
2.1. Pyrolysis of Biomass
2.2. Hydrothermal Carbonization
2.3. Ionothermal Carbonization
2.4. Template-Assisted Method
3. Activity Enhancement Strategies
3.1. Activation Process
3.2. Heteroatom Doping
3.3. Other Activity Enhancement Strategies
4. Classification and Applications
4.1. Herbaceous Biomass and Derivates
4.1.1. Fruit-Derived Biomass
4.1.2. Plant- and Leaf-Derived Biomass
4.1.3. Grain-Derived Biomass
4.1.4. Seed-Derived Biomass
4.2. Woody Biomass and Derivates
4.3. Animal and Human Waste
4.3.1. Animal-Derived Waste
4.3.2. Human-Derived Waste
4.4. Other Biomass Sources
4.4.1. Fungi
4.4.2. Aquatic Biomass
4.4.3. Industrial Biomass Wastes (Semi-Biomass)
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benny, L.; John, A.; Varghese, A.; Hegde, G.; George, L. Waste Elimination to Porous Carbonaceous Materials for the Application of Electrochemical Sensors: Recent Developments. J. Clean. Prod. 2021, 290, 125759. [Google Scholar] [CrossRef]
- Iannazzo, D.; Celesti, C.; Espro, C.; Ferlazzo, A.; Giofrè, S.V.; Scuderi, M.; Scalese, S.; Gabriele, B.; Mancuso, R.; Ziccarelli, I.; et al. Orange-Peel-Derived Nanobiochar for Targeted Cancer Therapy. Pharmaceutics 2022, 14, 2249. [Google Scholar] [CrossRef]
- Liu, A.; Wu, H.; Naeem, A.; Du, Q.; Ni, B.; Liu, H.; Li, Z.; Ming, L. Cellulose Nanocrystalline from Biomass Wastes: An Overview of Extraction, Functionalization and Applications in Drug Delivery. Int. J. Biol. Macromol. 2023, 241, 124557. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R.; Nayak, S.; Singh, S.; Sen, A.; Kumar, N.; Bhushan, R.; Aggarwal, M.; Das, P. Simultaneous Sustained Drug Delivery, Tracking, and On-Demand Photoactivation of DNA-Hydrogel Formulated from a Biomass-Derived DNA Nanoparticle. ACS Appl. Bio. Mater. 2023, 6, 1556–1565. [Google Scholar] [CrossRef]
- Tursi, A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Fan, J.; Kang, L.; Cheng, X.; Liu, D.; Zhang, S. Biomass-Derived Carbon Dots and Their Sensing Applications. Nanomaterials 2022, 12, 4473. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.J. Bioconversion of Biomass Waste into High Value Chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef]
- Rodríguez Correa, C.; Stollovsky, M.; Hehr, T.; Rauscher, Y.; Rolli, B.; Kruse, A. Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustain. Chem. Eng. 2017, 5, 8222–8233. [Google Scholar] [CrossRef]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of Hemicellulose, Cellulose and Lignin to the Mass and the Porous Properties of Chars and Steam Activated Carbons from Various Lignocellulosic Precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, Y.; Wei, Z.; Wang, J.; Zhang, Z.; Li, H.; Dai, S.; Wang, Y. Updating Biomass into Functional Carbon Material in Ionothermal Manner. ACS Appl. Mater. Interfaces 2014, 6, 12515–12522. [Google Scholar] [CrossRef]
- Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-Derived Carbon Nanomaterials for Sensor Applications. J. Pharm. Biomed. Anal. 2023, 222, 115102. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.C.; Chen, Y.C.; Lin, X.Z.; Shiue, A.; Huang, P.H.; Chen, Y.C.; Chang, S.M.; Tseng, C.H.; Zhou, B. Characterization and Adsorption Capacity of Potassium Permanganate Used to Modify Activated Carbon Filter Media for Indoor Formaldehyde Removal. Environ. Sci. Pollut. Res. 2018, 25, 28525–28545. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, J.M.; Jeon, Y.; Lee, J.; Oh, J.; Hooch Antink, W.; Kim, D.; Piao, Y. Novel Two-Step Activation of Biomass-Derived Carbon for Highly Sensitive Electrochemical Determination of Acetaminophen. Sens. Actuators B Chem. 2018, 259, 50–58. [Google Scholar] [CrossRef]
- Lee, D.W.; Jin, M.H.; Oh, D.; Lee, S.W.; Park, J.S. Straightforward Synthesis of Hierarchically Porous Nitrogen-Doped Carbon via Pyrolysis of Chitosan/Urea/KOH Mixtures and Its Application as a Support for Formic Acid Dehydrogenation Catalysts. ACS Sustain. Chem. Eng. 2017, 5, 9935–9944. [Google Scholar] [CrossRef]
- Cao, W.; Wang, B.; Xia, Y.; Zhou, W.; Zhang, J.; Wen, R.; Jia, Y.; Liu, Q. Preparation of Highly-Active Oxygen Reduction Reaction Catalyst by Direct Co-Pyrolysis of Biomass with KOH. Int. J. Electrochem. Sci. 2019, 14, 250–261. [Google Scholar] [CrossRef]
- Peng, C.; Yan, X.B.; Wang, R.T.; Lang, J.W.; Ou, Y.J.; Xue, Q.J. Promising Activated Carbons Derived from Waste Tea-Leaves and Their Application in High Performance Supercapacitors Electrodes. Electrochim. Acta 2013, 87, 401–408. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, C.; Wu, H. Sustainable Utilization of Wetland Biomass for Activated Carbon Production: A Review on Recent Advances in Modification and Activation Methods. Sci. Total Environ. 2021, 790, 148214. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Env. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Effect of Self-Doped Heteroatoms on the Performance of Biomass-Derived Carbon for Supercapacitor Applications. J. Power Sources 2020, 480, 228830. [Google Scholar] [CrossRef]
- Qu, P.; Gong, Z.; Cheng, H.; Xiong, W.; Wu, X.; Pei, P.; Zhao, R.; Zeng, Y.; Zhu, Z. Nanoflower-like CoS-Decorated 3D Porous Carbon Skeleton Derived from Rose for a High Performance Nonenzymatic Glucose Sensor. RSC Adv. 2015, 5, 106661–106667. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Karimi-Maleh, H.; Tahernejad-Javazmi, F. Fabrication of an Electroanalytical Sensor for Determination of Deoxyepinephrine in the Presence of Uric Acid Using CuFe2O4 Nanoparticle/Ionic Liquid Amplified Sensor. J. Electrochem. Soc. 2019, 166, H218–H223. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Sulfonated Porous Carbon Nanosheets Derived from Oak Nutshell Based High-Performance Supercapacitor for Powering Electronic Devices. Renew. Energy 2020, 161, 173–183. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Chen, S.M.; Pandikumar, A.; Lin, K.C. Fabrication of Platinum-Rhenium Nanoparticle-Decorated Porous Carbons: Voltammetric Sensing of Furazolidone. ACS Sustain. Chem. Eng. 2020, 8, 3591–3605. [Google Scholar] [CrossRef]
- Raghu, M.S.; Parashuram, L.; Kumar, K.Y.; Prasanna, B.P.; Rao, S.; Krishnaiah, P.; Prashanth, K.N.; Kumar, C.B.P.; Alrobei, H. Facile Green Synthesis of Boroncarbonitride Using Orange Peel; Its Application in High-Performance Supercapacitors and Detection of Levodopa in Real Samples. Mater. Today Commun. 2020, 24, 101033. [Google Scholar] [CrossRef]
- Sha, T.; Liu, J.; Sun, M.; Li, L.; Bai, J.; Hu, Z.; Zhou, M. Green and Low-Cost Synthesis of Nitrogen-Doped Graphene-like Mesoporous Nanosheets from the Biomass Waste of Okara for the Amperometric Detection of Vitamin C in Real Samples. Talanta 2019, 200, 300–306. [Google Scholar] [CrossRef]
- K. B., A.; Bhat, V.S.; Varghese, A.; George, L.; Hegde, G. Non-Enzymatic Electrochemical Determination of Progesterone Using Carbon Nanospheres from Onion Peels Coated on Carbon Fiber Paper. J. Electrochem. Soc. 2019, 166, B1097–B1106. [Google Scholar] [CrossRef]
- Asad, M.; Zulfiqar, A.; Raza, R.; Yang, M.; Hayat, A.; Akhtar, N. Orange Peel Derived C-Dots Decorated CuO Nanorods for the Selective Monitoring of Dopamine from Deboned Chicken. Electroanalysis 2020, 32, 11–18. [Google Scholar] [CrossRef]
- Espro, C.; Satira, A.; Mauriello, F.; Anajafi, Z.; Moulaee, K.; Iannazzo, D.; Neri, G. Orange Peels-Derived Hydrochar for Chemical Sensing Applications. Sens. Actuators B Chem. 2021, 341, 130016. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.; Guo, Z.; Zhang, M.; Zhou, M.; Zhai, Z.; Xu, Y. Self-Assembly of MoS2 Nanosheet on Functionalized Pomelo Peel Derived Carbon and Its Electrochemical Sensor Behavior toward Taxifolin. Inorg. Chem. Commun. 2021, 129, 108631. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhao, J.; Zhang, R.; Zhao, N.; Ren, H.; Li, Y. Simultaneous Determination of Paracetamol and P-Aminophenol Using Glassy Carbon Electrode Modified with Nitrogen- and Sulfur- Co-Doped Carbon Dots. Microchim. Acta 2019, 186, 733. [Google Scholar] [CrossRef]
- Pandey, U.; Rani, M.U.; Deshpande, A.S.; Singh, S.G.; Agrawal, A. Sweetcorn Husk Derived Porous Carbon with Inherent Silica for Ultrasensitive Detection of Ovarian Cancer in Blood Plasma. Electrochim. Acta 2021, 397, 139258. [Google Scholar] [CrossRef]
- Bi, Y.; Hei, Y.; Wang, N.; Liu, J.; Ma, C.B. Synthesis of a Clustered Carbon Aerogel Interconnected by Carbon Balls from the Biomass of Taros for Construction of a Multi-Functional Electrochemical Sensor. Anal. Chim. Acta 2021, 1164, 338514. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Tsai, I.C.; Liu, Y.F.; Chen, C. Upcycling Fruit Peel Waste into a Green Reductant to Reduce Graphene Oxide for Fabricating an Electrochemical Sensing Platform for Sulfamethoxazole Determination in Aquatic Environments. Sci. Total Environ. 2022, 812, 152273. [Google Scholar] [CrossRef] [PubMed]
- Allende, S.; Liu, Y.; Zafar, M.A.; Jacob, M.V. Nitrite Sensor Using Activated Biochar Synthesised by Microwave-Assisted Pyrolysis. Waste Dispos. Sustain. Energy 2023, 5, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Li, Y.; Wang, D.; Ma, H.; Ren, H.; Shi, Y.; Han, Y.; Ye, B.C. Electrochemical Sensing Platform Based on the Biomass-Derived Microporous Carbons for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Biosens. Bioelectron. 2018, 121, 96–103. [Google Scholar] [CrossRef]
- El Hamdouni, Y.; El Hajjaji, S.; Szabó, T.; Trif, L.; Felhősi, I.; Abbi, K.; Labjar, N.; Harmouche, L.; Shaban, A. Biomass Valorization of Walnut Shell into Biochar as a Resource for Electrochemical Simultaneous Detection of Heavy Metal Ions in Water and Soil Samples: Preparation, Characterization, and Applications. Arab. J. Chem. 2022, 15, 104252. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, B.; Deng, X.; Wang, X.; Zhang, M.; Cao, Y.; Wei, Z.; Sun, S. A Novel Electrochemical Sensor Based on N, S Co-Doped Liquorice Carbon/Functionalized MWCNTs Nanocomposites for Simultaneous Detection of Licochalcone A and Liquiritin. Talanta 2023, 252, 123869. [Google Scholar] [CrossRef] [PubMed]
- Incebay, H.; Aktepe, L.; Leblebici, Z. An Electrochemical Sensor Based on Green Tea Extract for Detection of Cd(II) Ions by Differential Pulse Anodic Stripping Voltammetry. Surf. Interfaces 2020, 21, 100726. [Google Scholar] [CrossRef]
- Dash, S.R.; Bag, S.S.; Golder, A.K. Carbon Dots Derived from Waste Psidium Guajava Leaves for Electrocatalytic Sensing of Chlorpyrifos. Electroanalysis 2022, 34, 1141–1149. [Google Scholar] [CrossRef]
- Tran, H.V.; Tran, M.T.; van Phi, T. Glassy Carbon Electrode Modified with Luteolin Extracted from Myoporum Bontioides: A New Approach for Development of the Electrochemical Cu2+ Sensor. Multifunct. Mater. 2021, 4, 035004. [Google Scholar] [CrossRef]
- Haque, M.A.; Akanda, M.R.; Hossain, D.; Haque, M.A.; Buliyaminu, I.A.; Basha, S.I.; Oyama, M.; Aziz, M.A. Preparation and Characterization of Bhant Leaves-Derived Nitrogen-Doped Carbon and Its Use as an Electrocatalyst for Detecting Ketoconazole. Electroanalysis 2020, 32, 528–535. [Google Scholar] [CrossRef]
- Niu, X.; Huang, Y.; Zhang, W.; Yan, L.; Wang, L.; Li, Z.; Sun, W. Synthesis of Gold Nanoflakes Decorated Biomass-Derived Porous Carbon and Its Application in Electrochemical Sensing of Luteolin. J. Electroanal. Chem. 2021, 880, 114832. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Zhao, G.; Zheng, Y.; Han, Q.; Xu, X.; Ying, M.; Wang, G.; Hu, Z.; Xu, H. Utilization of Nitrogen Self-Doped Biocarbon Derived from Soybean Nodule in Electrochemically Sensing Ascorbic Acid and Dopamine. J. Porous Mater. 2021, 28, 529–541. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, X.; Liu, Z.; Gai, L.; Yue, Y.; Ma, H. Sensitive and Selective Electrochemical Detection of Lead(II) Based on Waste-Biomass-Derived Carbon Quantum Dots@Zeolitic Imidazolate Framework-8. Materials 2023, 16, 3378. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Bressi, V.; Espro, C.; Iannazzo, D.; Piperopoulos, E.; Neri, G. Electrochemical Determination of Nitrites and Sulfites by Using Waste-Derived Nanobiochar. J. Electroanal. Chem. 2023, 928, 117071. [Google Scholar] [CrossRef]
- Padmapriya, A.; Thiyagarajan, P.; Devendiran, M.; Kalaivani, R.A.; Shanmugharaj, A.M. Electrochemical Sensor Based on N,P–Doped Carbon Quantum Dots Derived from the Banana Flower Bract (Musa Acuminata) Biomass Extract for Selective and Picomolar Detection of Dopamine. J. Electroanal. Chem. 2023, 943, 117609. [Google Scholar] [CrossRef]
- Manickaraj, S.S.M.; Pandiyarajan, S.; Liao, A.H.; Ramachandran, A.; Huang, S.T.; Natarajan, P.; Chuang, H.C. Sansevieria Trifasciata Biomass-Derived Activated Carbon by Supercritical-CO2 Route: Electrochemical Detection towards Carcinogenic Organic Pollutant and Energy Storage Application. Electrochim. Acta 2022, 424, 140672. [Google Scholar] [CrossRef]
- Huang, Y.; Zang, Y.; Ruan, S.; Zhang, Y.; Gao, P.; Yin, W.; Hou, C.; Huo, D.; Yang, M.; Fa, H. bao A High Efficiency N, P Doped Porous Carbon Nanoparticles Derived from Lotus Leaves for Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. Microchem. J. 2021, 165, 106152. [Google Scholar] [CrossRef]
- Wannasri, N.; Uppachai, P.; Butwong, N.; Jantrasee, S.; Isa, I.M.; Loiha, S.; Srijaranai, S.; Mukdasai, S. A Facile Nonenzymatic Electrochemical Sensor Based on Copper Oxide Nanoparticles Deposited on Activated Carbon for the Highly Sensitive Detection of Methyl Parathion. J. Appl. Electrochem. 2022, 52, 595–606. [Google Scholar] [CrossRef]
- Estrada-Aldrete, J.; Hernández-López, J.M.; García-León, A.M.; Peralta-Hernández, J.M.; Cerino-Córdova, F.J. Electroanalytical Determination of Heavy Metals in Aqueous Solutions by Using a Carbon Paste Electrode Modified with Spent Coffee Grounds. J. Electroanal. Chem. 2020, 857, 113663. [Google Scholar] [CrossRef]
- Binh, N.T.; Dung, N.N.; Thanh, N.M.; Nhiem, D.N.; Dung, D.M.; Son, L.L.; Quyen, N.D.V.; Tuyen, T.N.; Tuan, N.H.; Khieu, D.Q. Electrochemical Determination of Methylparaben with Manganese Ferrite/Activated Carbon-Modified Electrode. J. Mater. Sci. Mater. Electron. 2022, 33, 20884–20899. [Google Scholar] [CrossRef]
- Haque, M.A.; Hasan, M.M.; Islam, T.; Razzak, M.A.; Alharthi, N.H.; Sindan, A.; Karim, M.R.; Basha, S.I.; Aziz, M.A.; Ahammad, A.J.S. Hollow Reticular Shaped Highly Ordered Rice Husk Carbon for the Simultaneous Determination of Dopamine and Uric Acid. Electroanalysis 2020, 32, 1957–1970. [Google Scholar] [CrossRef]
- Gissawong, N.; Srijaranai, S.; Boonchiangma, S.; Uppachai, P.; Seehamart, K.; Jantrasee, S.; Moore, E.; Mukdasai, S. An Electrochemical Sensor for Voltammetric Detection of Ciprofloxacin Using a Glassy Carbon Electrode Modified with Activated Carbon, Gold Nanoparticles and Supramolecular Solvent. Microchim. Acta 2021, 188, 208. [Google Scholar] [CrossRef]
- Luyen, N.D.; Toan, T.T.T.; Trang, H.T.; Nguyen, V.T.; Son, L.V.T.; Thanh, T.S.; Thanh, N.M.; Quy, P.T.; Khieu, D.Q. Electrochemical Determination of Triclosan Using ZIF-11/Activated Carbon Derived from the Rice Husk Modified Electrode. J. Nanomater. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Wu, T.; Li, L.; Song, G.; Ran, M.; Lu, X.; Liu, X. An Ultrasensitive Electrochemical Sensor Based on Cotton Carbon Fiber Composites for the Determination of Superoxide Anion Release from Cells. Microchim. Acta 2019, 186, 198. [Google Scholar] [CrossRef]
- Wu, T.; Li, L.; Jiang, X.; Liu, F.; Liu, Q.; Liu, X. Construction of Silver-Cotton Carbon Fiber Sensing Interface and Study on the Protective Effect of Antioxidants on Hypoxia-Induced Cell Damage. Microchem. J. 2020, 159, 105345. [Google Scholar] [CrossRef]
- Bala, K.; Suriyaprakash, J.; Singh, P.; Chauhan, K.; Villa, A.; Gupta, N. Copper and Cobalt Nanoparticles Embedded in Naturally Derived Graphite Electrodes for the Sensing of the Neurotransmitter Epinephrine. New J. Chem. 2018, 42, 6604–6608. [Google Scholar] [CrossRef]
- Yallappa, S.; Shivakumar, M.; Nagashree, K.L.; Dharmaprakash, M.S.; Vinu, A.; Hegde, G. Electrochemical Determination of Nitrite Using Catalyst Free Mesoporous Carbon Nanoparticles from Bio Renewable Areca Nut Seeds. J. Electrochem. Soc. 2018, 165, H614–H619. [Google Scholar] [CrossRef]
- Li, K.; Xu, J.; Arsalan, M.; Cheng, N.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T. Nitrogen Doped Carbon Dots Derived from Natural Seeds and Their Application for Electrochemical Sensing. J. Electrochem. Soc. 2019, 166, B56–B62. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, B.; Chen, S.; Wu, L.; Yang, J.; Liang, S.; Xiao, K.; Hu, J.; Hou, H. Ultrasensitive and Simultaneous Electrochemical Determination of Pb2+ and Cd2+ Based on Biomass Derived Lotus Root-Like Hierarchical Porous Carbon/Bismuth Composite. J. Electrochem. Soc. 2020, 167, 087505. [Google Scholar] [CrossRef]
- Sha, R.; Jones, S.S.; Vishnu, N.; Soundiraraju, B.; Badhulika, S. A Novel Biomass Derived Carbon Quantum Dots for Highly Sensitive and Selective Detection of Hydrazine. Electroanalysis 2018, 30, 2228–2232. [Google Scholar] [CrossRef]
- Harraz, F.A.; Rashed, M.A.; Faisal, M.; Alsaiari, M.; Alsareii, S.A. Sensitive and Selective Electrochemical Sensor for Detecting 4-Nitrophenole Using Novel Gold Nanoparticles/Reduced Graphene Oxide/Activated Carbon Nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130068. [Google Scholar] [CrossRef]
- Djemmoe, L.G.; Njanja, E.; Tchieno, F.M.M.; Ndinteh, D.T.; Ndungu, P.G.; Tonle, I.K. Activated Hordeum Vulgare L. Dust as Carbon Paste Electrode Modifier for the Sensitive Electrochemical Detection of Cd2+, Pb2+ and Hg2+ ions. Int. J. Env. Environ. Anal. Chem. 2020, 100, 1429–1445. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, J.; Yan, L.; Li, G.; Wang, X.; Sun, W. Banana Peel Derived Biomass Carbon: Multi-Walled Carbon Nanotube Composite Modified Electrode for Sensitive Voltammetric Detection of Baicalein. J. Chin. Chem. Soc. 2022, 69, 359–365. [Google Scholar] [CrossRef]
- Sha, T.; Li, X.; Liu, J.; Sun, M.; Wang, N.; Bo, X.; Guo, Y.; Hu, Z.; Zhou, M. Biomass Waste Derived Carbon Nanoballs Aggregation Networks-Based Aerogels as Electrode Material for Electrochemical Sensing. Sens. Actuators B Chem. 2018, 277, 195–204. [Google Scholar] [CrossRef]
- Liu, S.; Han, T.; Wang, Z.; Fei, T.; Zhang, T. Biomass-Derived Nitrogen and Phosphorus Co-Doped Hierarchical Micro/Mesoporous Carbon Materials for High-Performance Non-Enzymatic H2O2 Sensing. Electroanalysis 2019, 31, 527–534. [Google Scholar] [CrossRef]
- Baikeli, Y.; Mamat, X.; Yalikun, N.; Wang, Y.; Qiao, M.; Li, Y.; Hu, G. Differential Pulse Voltammetry Detection of Pb(Ii) Using Nitrogen-Doped Activated Nanoporous Carbon from Almond Shells. RSC Adv. 2019, 9, 23678–23685. [Google Scholar] [CrossRef]
- Wei, G.; Wang, L.; Huo, L.; Zhang, Y. Economical, Green and Rapid Synthesis of CDs-Cu2O/CuO Nanotube from the Biomass Waste Reed as Sensitive Sensing Platform for the Electrochemical Detection of Hydrazine. Talanta 2020, 209, 120431. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cano, L.A.; Zárate-Guzmán, A.I.; Carrasco-Marín, F.; González-Gutiérrez, L.V. Electrochemical Detection of Copper in Water Using Carbon Paste Electrodes Prepared from Bio-Template (Grapefruit Peels) Functionalized with Carboxyl Groups. J. Electroanal. Chem. 2019, 837, 22–29. [Google Scholar] [CrossRef]
- Bressi, V.; Chiarotto, I.; Ferlazzo, A.; Celesti, C.; Michenzi, C.; Len, T.; Iannazzo, D.; Neri, G.; Espro, C. Voltammetric Sensor Based on Waste-Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene. ChemElectroChem 2023, 10, e202300004. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar Obtained from Spent Coffee Grounds: Evaluation of Adsorption Properties and Its Application in a Voltammetric Sensor for Lead (II) Ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Njanja, E.; Mbokou, S.F.; Pontie, M.; Nacef, M.; Tonle, I.K. Comparative Assessment of Methylene Blue Biosorption Using Coffee Husks and Corn Cobs: Towards the Elaboration of a Lignocellulosic-Based Amperometric Sensor. SN Appl. Sci. 2019, 1, 513. [Google Scholar] [CrossRef]
- Chen, B.; Xie, Q.; Zhang, S.; Lin, L.; Zhang, Y.; Zhang, L.; Jiang, Y.; Zhao, M. A Novel Electrochemical Molecularly Imprinted Senor Based on CuCo2O4@ Biomass Derived Carbon for Sensitive Detection of Tryptophan. J. Electroanal. Chem. 2021, 901, 115680. [Google Scholar] [CrossRef]
- Manavalan, S.; Veerakumar, P.; Chen, S.M.; Murugan, K.; Lin, K.C. Binder-Free Modification of a Glassy Carbon Electrode by Using Porous Carbon for Voltammetric Determination of Nitro Isomers. ACS Omega 2019, 4, 8907–8918. [Google Scholar] [CrossRef]
- Mathew, S.; Mathew, B. Biomass-Derived Carbon Dots as a Nanoswitch, Logic Gate Operation, and Electrochemical Sensor for Flavonoids. New J. Chem. 2023, 47, 2383–2395. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Liu, T.; Hei, Y.; Hassan, M.; Zhang, S.; Lin, J.; Wang, T.; Bo, X.; Wang, H.L.; et al. The Biomass of Ground Cherry Husks Derived Carbon Nanoplates for Electrochemical Sensing. Sens. Actuators B Chem. 2018, 255, 3248–3256. [Google Scholar] [CrossRef]
- Lu, Z.; Zhong, J.; Zhang, Y.; Sun, M.; Zou, P.; Du, H.; Wang, X.; Rao, H.; Wang, Y. MOF-Derived Co3O4/FeCo2O4 Incorporated Porous Biomass Carbon: Simultaneous Electrochemical Determination of Dopamine, Acetaminophen and Xanthine. J. Alloys Compd. 2021, 858, 157701. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, Y.; Zhu, R.; Chen, Y.; Liu, X.; Xu, J.; Li, M.; Wang, D. Urea Detection of Electrochemical Transistor Sensors Based on Polyanline (PANI)/MWCNT/Cotton Yarns. Electroanalysis 2021, 33, 2406–2416. [Google Scholar] [CrossRef]
- Yang, X.; He, C.; Qiu, Y.; Bao, J.; Li, P.; Chen, Y.; Zhou, X.; Huang, B.; Zheng, X. Electrochemical Sensing Based on Biomass-Derived, Hierarchical, Porous Carbon for Simultaneous Detection of Dopamine and Uric Acid. Mater. Chem. Phys. 2022, 292, 126825. [Google Scholar] [CrossRef]
- Monteiro, M.K.S.; Paiva, S.S.M.; da Silva, D.R.; Vilar, V.J.P.; Martínez-Huitle, C.A.; dos Santos, E.V. Novel Cork-Graphite Electrochemical Sensor for Voltammetric Determination of Caffeine. J. Electroanal. Chem. 2019, 839, 283–289. [Google Scholar] [CrossRef]
- Yang, B.; Bin, D.; Tian, T.; Liu, Y.; Liu, B. An Ordered Mesoporous Carbon Nanofiber Array for the Sensitive Electrochemical Detection of Malachite Green. ChemElectroChem 2020, 7, 659–664. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Kang, Z.W.; Zheng, C.; Yang, D.P. Facile Synthesis of Eggshell Membrane-Templated Au/CeO2 3D Nanocomposite Networks for Nonenzymatic Electrochemical Dopamine Sensor. Nanoscale Res. Lett. 2020, 15, 24–100. [Google Scholar] [CrossRef]
- Tchoffo, R.; Ngassa, G.B.P.; Doungmo, G.; Kamdem, A.T.; Tonlé, I.K.; Ngameni, E. Surface Functionalization of Natural Hydroxyapatite by Polymerization of β-Cyclodextrin: Application as Electrode Material for the Electrochemical Detection of Pb(II). Environ. Sci. Pollut. Res. 2021, 29, 222–235. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Wang, Q.; Sun, K.; Lee, C.; Cao, Y.; Si, W.; Wei, H.; Li, Z.; Wang, F. The Biomass of Pig-Blood-Derived Carbon as a Novel Electrode Material for Hydrogen Peroxide Electrochemical Sensing. Catalysts 2022, 12, 1438. [Google Scholar] [CrossRef]
- Melo, J.F.; Junior, J.H.S.; Freire, T.B. de M.; Rigoti, E.; Pergher, S.B.C.; Martínez-Huitle, C.A.; Castro, P.S. Industrial Waste Reuse: An Alternative Source to Reduced Graphene Oxide for Preparing Electrochemical Sensors. Electrochim. Acta 2023, 454, 142382. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Hasebe, Y.; Zhang, Z. Electrochemical Sensing Platform Based on Lotus Stem-Derived Porous Carbon for the Simultaneous Determination of Hydroquinone, Catechol and Nitrite. Electroanalysis 2021, 33, 956–963. [Google Scholar] [CrossRef]
- Ngana, B.N.; Seumo, P.M.T.; Sambang, L.M.; Dedzo, G.K.; Nanseu-Njiki, C.P.; Ngameni, E. Grafting of Reactive Dyes onto Lignocellulosic Material: Application for Pb(II) Adsorption and Electrochemical Detection in Aqueous Solution. J. Env. Environ. Chem. Eng. 2021, 9, 104984. [Google Scholar] [CrossRef]
- Sebastian, M.; Aravind, A.; Mathew, B. Green Silver Nanoparticles Based Multi-Technique Sensor for Environmental Hazardous Cu(II) Ion. Bionanoscience 2019, 9, 373–385. [Google Scholar] [CrossRef]
- Yalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wang, P.; Hu, G. N, S, P-Triple Doped Porous Carbon as an Improved Electrochemical Sensor for Metronidazole Determination. J. Electrochem. Soc. 2019, 166, B1131–B1137. [Google Scholar] [CrossRef]
- Fozing Mekeuo, G.A.; Despas, C.; Péguy Nanseu-Njiki, C.; Walcarius, A.; Ngameni, E. Preparation of Functionalized Ayous Sawdust-Carbon Nanotubes Composite for the Electrochemical Determination of Carbendazim Pesticide. Electroanalysis 2022, 34, 667–676. [Google Scholar] [CrossRef]
- Lu, Y.; Mu, X.; Liu, Y.; Gao, Y.; Shi, Z.; Zheng, Y.; Huang, W. The N&P Co-Doped Lotus Root Derived Carbon Materials for Highly Sensitive Electrochemical Analysis of Baicalein and Luteolin. Electroanalysis 2023, 35, e202200129. [Google Scholar] [CrossRef]
- Deussi Ngaha, M.C.; Kougoum Tchieda, V.; Kamdem Tamo, A.; Doungmo, G.; Njanja, E.; Kenfack Tonle, I. Aminoalcohol-Functionalization of Alkali Palm Oil Fiber and Application as Electrochemical Sensor for 2-Nitrophenol Determination. Electroanalysis 2022, 34, 1789–1801. [Google Scholar] [CrossRef]
- Bilge, S.; Karadurmus, L.; Atici, E.B.; Sınağ, A.; Ozkan, S.A. A Novel Electrochemical Sensor Based on Magnetic Co3O4 Nanoparticles/Carbon Recycled from Waste Sponges for Sensitive Determination of Anticancer Drug Ruxolitinib. Sens. Actuators B Chem. 2022, 367, 132127. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Sun, M.; Sha, T.; Bo, X.; Zhou, M. Amperometric Sensing of Ascorbic Acid by Using a Glassy Carbon Electrode Modified with Mesoporous Carbon Nanorods. Microchim. Acta 2018, 185, 474. [Google Scholar] [CrossRef]
- Qin, X.; Dong, Y.; Wang, M.; Zhu, Z.; Li, M.; Chen, X.; Yang, D.; Shao, Y. C-Dots Assisted Synthesis of Gold Nanoparticles as Labels to Catalyze Copper Deposition for Ultrasensitive Electrochemical Sensing of Proteins. Sci. China Chem. 2018, 61, 476–482. [Google Scholar] [CrossRef]
- Ding, Q.; Kang, Z.; Cao, L.; Lin, M.; Lin, H.; Yang, D.P. Conversion of Waste Eggshell into Difunctional Au/CaCO3 Nanocomposite for 4-Nitrophenol Electrochemical Detection and Catalytic Reduction. Appl. Surf. Sci. 2020, 510, 145526. [Google Scholar] [CrossRef]
- van Staden, J. (Koos) F.; Nuta, R.-G.; Tatu (Arnold), G.-L. Determination of Nitrite from Water Catchment Areas Using Graphite Based Electrodes. J. Electrochem. Soc. 2018, 165, B565–B570. [Google Scholar] [CrossRef]
- Ganesan, S.; Sivam, S.; Elancheziyan, M.; Senthilkumar, S.; Ramakrishan, S.G.; Soundappan, T.; Ponnusamy, V.K. Novel Delipidated Chicken Feather Waste-Derived Carbon-Based Molybdenum Oxide Nanocomposite as Efficient Electrocatalyst for Rapid Detection of Hydroquinone and Catechol in Environmental Waters. Environ. Pollut. 2022, 293, 118556. [Google Scholar] [CrossRef]
- Cao, L.; Kang, Z.W.; Ding, Q.; Zhang, X.; Lin, H.; Lin, M.; Yang, D.P. Rapid Pyrolysis of Cu2+-Polluted Eggshell Membrane into a Functional Cu2+-Cu+/Biochar for Ultrasensitive Electrochemical Detection of Nitrite in Water. Sci. Total Environ. 2020, 723, 138008. [Google Scholar] [CrossRef] [PubMed]
- Razmi, H.; Bahadori, Y. Chicken Feet Yellow Membrane/over-Oxidized Carbon Paste Electrodes: A Novel Electrochemical Platform for Determination of Vitamin C. Microchem. J. 2021, 168, 106442. [Google Scholar] [CrossRef]
- Bilge, S.; Dogan Topal, B.; Caglayan, M.G.; Unal, M.A.; Nazır, H.; Atici, E.B.; Sınağ, A.; Ozkan, S.A. Human Hair Rich in Pyridinic Nitrogen-Base DNA Biosensor for Direct Electrochemical Monitoring of Palbociclib-DNA Interaction. Bioelectrochemistry 2022, 148, 108264. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Pu, H.; Zhang, Y.; Gao, P.; Sun, Q.; Yin, W.; Fa, H. Electrochemical Sensor Based on Biomass Yeast Integrated Sulfur-Doped Graphene and Carboxylated Carbon Nanotubes/MoS2 for Highly-Sensitive Detection of Pb2+. Electroanalysis 2023, 35, e202200163. [Google Scholar] [CrossRef]
- Hei, Y.; Li, X.; Zhou, X.; Liu, J.; Sun, M.; Sha, T.; Xu, C.; Xue, W.; Bo, X.; Zhou, M. Electrochemical Sensing Platform Based on Kelp-Derived Hierarchical Meso-Macroporous Carbons. Anal. Chim. Acta 2018, 1003, 16–25. [Google Scholar] [CrossRef]
- Lima, D.; Calaça, G.N.; Viana, A.G.; Pessôa, C.A. Porphyran-Capped Gold Nanoparticles Modified Carbon Paste Electrode: A Simple and Efficient Electrochemical Sensor for the Sensitive Determination of 5-Fluorouracil. Appl. Surf. Sci. 2018, 427, 742–753. [Google Scholar] [CrossRef]
- Sfragano, P.S.; Laschi, S.; Renai, L.; Fichera, M.; Del Bubba, M.; Palchetti, I. Electrochemical Sensors Based on Sewage Sludge–Derived Biochar for the Analysis of Anthocyanins in Berry Fruits. Anal. Bioanal. Chem. 2022, 414, 6295–6307. [Google Scholar] [CrossRef]
Biomass Group | C % | O % | H % | S % | N % | Volatile Matter % | Fixed Carbon % | Moisture % | Ash % |
---|---|---|---|---|---|---|---|---|---|
Herbaceous biomass | 42–58 | 34–49 | 3–9 | <1–1 | <1–3 | 41–77 | 9–35 | 4–48 | 1–19 |
Woody biomass | 49–57 | 32–45 | 5–10 | <1–1 | <1–1 | 30–80 | 6–25 | 5–63 | 1–8 |
Animal and human waste | 57–61 | 21–25 | 7–8 | 1–2 | 6–12 | 43–62 | 12–13 | 3–9 | 23–34 |
Aquatic biomass | 27–43 | 34–46 | 4–6 | 1–3 | 1–3 | 42–53 | 22–33 | 8–14 | 11–38 |
Method | Advantages | Disadvantages |
---|---|---|
Pyrolysis | Tunable properties User friendly | Slow rate of production Significant air pollution Difficult to know the mechanism Low variety of functional groups on the surface material |
Hydrothermal carbonization | Less toxicity Tunable morphology Abundant heteroatoms can be doped | Large size of carbon particles Sealed vessel required |
Ionothermal carbonization | No need for the utilization of high temperatures and sealed vessels Abundant heteroatoms can be doped IL can be recovered and reused | Expensive |
Template-assisted method | Highly porous material | Difficult to remove the template Low stability of the template at high temperatures Multi-step process More expensive |
Sensing Platform | Biomass-Derived | Analyte | Technique | LR (μM) | LOD (μM) | Ref. |
---|---|---|---|---|---|---|
HVE-Na2CO3/CPE | Hordeum vulgare dust | Cd2+, Pb2+ and Hg2+ | ASDPV | - | 1.82 (Cd2+), 0.000691 (Pb2+) and 0.000237 (Hg2+) | [67] |
BPBC-MWCNT/GCE | Banana peel | Baicalein | DPV | 0.0040–100.0 | 0.00133 | [68] |
CNANAs/GCE | Shaddock peel waste | H2O2 | Amp | 5–1760 | 3.53 | [69] |
N,P-MMC | Okra | H2O2 | Amp | 100–10,000 and 20,000–200,000 | 6.8 | [70] |
N-NPC-Nafion/GCE | Almond shells | Pb(II) | ASDPV | 0.0097–0.5797 | 0.0034 | [71] |
CDs-Cu2O/CuOGCE | Reeds | Hydrazine | Amp | 0.99 μM to 5903 | 0.024 | [72] |
CP-OM-COOH | Grapefruit peel | Cu(II) | DPV | 0.2362–1.0236 | 0.0394 | [73] |
CDs/SPCE | Orange peel waste | Nitrobenzene | DPV | 0.1–2000 | 0.013 | [74] |
CPME-ACfB 300 | Spent coffee grounds | Pb(II) | DPAdSV | 0.128–2.44 | 0.0045 | [75] |
CH-CPE | Coffee husks | Methylene Blue | SWV | 1–125 | 3 | [76] |
CuCo2O4@BC | Lactuca sativa L. var. Ramosa | Tryptophan | DPV | 0.01–1 and 1–40 | 0.003 | [77] |
PC900/GCE | Liquidambar formosana tree leaves | 3-nitroaniline and 4-nitroaniline | DPV | 0.2–115.6 (3-nitroaniline) 0.5–120 (4-nitroaniline) | 0.0551 (3-nitroaniline) and 0.0326 (4-nitroaniline) | [78] |
CDs/GCE | Eclipta Alba leaves | Morin | DPV | 50–350 | 1.42 × 10−7 | [79] |
N,P-CQD | Banana flower bract (Musa acuminata) | Dopamine | DPV | 6–100 | ∼0.0005 | [30] |
BG-CNPs/GC | Cherry (Physalis) peruviana) husks | H2O2 | Amp | 10–220 | 1.6 | [80] |
BC/Co3O4/FeCo2O4/GCE | Pinecones | Dopamine, acetaminophen, and xanthine | DPV | 0.1–250 (Dopamine) 0.1–220 (Acetaminophen), and 0.5–280 (Xantine) | 0.04587 (Dopamine), 0.02886 (Acetaminophen), and 0.1209 (Xantine) | [81] |
PANI/MWCNT/Cotton Yarns | Cotton yarns | Urea | Amp | 0.001–1000 | 0.001 | [82] |
NSPAC/GCE | Chinese fir sawdust | Dopamine and uric acid | DPV | 0.2–100.0 (Dopamine), 0.2–50.0 (Uric acid) | 0.1 (for Dopamine and Uric acid) | [83] |
GrRAC-70% | Cork powder | Caffeine | DPV | 2.5–1000 | 2.94 | [84] |
OMCNs | Crab shell | Malachite green | DPV | 0.1–22.1 | 0.05 | [85] |
ESM-AC | Egg shell membrane | Dopamine | DPV | 100–10,000 | 0.26 | [86] |
GCE/NHAPP0.5-CA-β-CD | Bovine bones | Pb(II) | DPASV | 0.02–0.20 | 0.000506 | [87] |
Fe-BCs | Pig blood | H2O2 | Amp | 0.1–2000 | 0.046 | [88] |
r-rGO/GCE | Waste from powder juice industry | Paracetamol | DPV | 60–500 | 0.28 | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onfray, C.; Thiam, A. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines 2023, 14, 1688. https://doi.org/10.3390/mi14091688
Onfray C, Thiam A. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines. 2023; 14(9):1688. https://doi.org/10.3390/mi14091688
Chicago/Turabian StyleOnfray, Christian, and Abdoulaye Thiam. 2023. "Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review" Micromachines 14, no. 9: 1688. https://doi.org/10.3390/mi14091688
APA StyleOnfray, C., & Thiam, A. (2023). Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines, 14(9), 1688. https://doi.org/10.3390/mi14091688