Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions
Abstract
:1. Introduction
2. Methods
2.1. Principle of Image-Based Quantification
2.2. Construction of the Image-Based Quantitative Indentation Setup
3. Results and Discussions
3.1. Realization of Image-Based Quantitative Indentation
3.2. Image-Based Quantitative Indentation Experiment
- Tilt the H-bar sample to a suitable viewing condition, and make sure the reference beam, the area to be indented and the area of interest on the sample are within the sight of the camera;
- Set to the highest magnification that meets the above requirements and a suitable image resolution;
- Set the frame rate;
- Start recording;
- After all these preparations, drive the indenter towards the sample. Do not tilt or move the sample with the goniometer during the entire process of indentation, holding, and retraction. Monitor the process to ensure that the indenter, the reference beam, and the observing region of the sample are in the TEM images at all times;
- After the indentation process, stop recording.
3.3. Extraction of Displacement Information
3.4. Calculation of Quantitative Mechanical Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Mao, S.; Zhang, J.; Li, Z.; Deng, Q.; Ning, J.; Yang, X.; Wang, L.; Ji, Y.; Li, X.; et al. MEMS Device for Quantitative In Situ Mechanical Testing in Electron Microscope. Micromachines 2017, 8, 31. [Google Scholar] [CrossRef]
- Elhebeary, M.; Saif, M.T.A. A novel MEMS stage for in-situ thermomechanical testing of single crystal silicon microbeams under bending. Extrem. Mech. Lett. 2018, 23, 1–8. [Google Scholar] [CrossRef]
- Murphy, K.F.; Piccione, B.; Zanjani, M.B.; Lukes, J.R.; Gianola, D.S. Strain- and Defect-Mediated Thermal Conductivity in Silicon Nanowires. Nano Lett. 2014, 14, 3785–3792. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Stangebye, S.; Jungjohann, K.; Boyce, B.; Zhu, T.; Kacher, J.; Pierron, O.N. In situ TEM measurement of activation volume in ultrafine grained gold. Nanoscale 2020, 12, 7146–7158. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Xu, F.; Li, T.; Wang, Y. In-situ TEM mechanical characterization of nanowire in atomic scale using MEMS device. Microsyst. Technol. 2018, 24, 2045–2049. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Z.; Zhang, X.; Cui, Y.; Xu, F.; Li, T.; Wang, Y. In situ TEM mechanical characterization of one-dimensional nanostructures via a standard double-tilt holder compatible MEMS device. Ultramicroscopy 2019, 198, 43–48. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zeng, Z.; Zhou, H.; He, J.; Liu, P.; Chen, M.; Han, J.; Srolovitz, D.J.; Teng, J.; et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022, 375, 1261–1265. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, X.; Zhai, Y.; Zhang, Q.; Ma, D.; Mao, S.; Deng, Q.; Li, Z.; Li, X.; et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten. Nat. Commun. 2021, 12, 2218. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhao, Y.S.; Chen, Y.; Li, A.; Zhang, J.; Zhai, Y.; Li, Z.; Ma, D.; Li, X.; et al. Oxygen changes crack modes of Ni-based single crystal superalloy. Mater. Res. Lett. 2021, 9, 531–539. [Google Scholar] [CrossRef]
- Chisholm, C.; Bei, H.; Lowry, M.B.; Oh, J.; Asif, S.A.S.; Warren, O.L.; Shan, Z.W.; George, E.P.; Minor, A.M. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 2012, 60, 2258–2264. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, Y.; Chang, T.-H.; Liu, Q.; Chen, L.; Lu, W.D.; Zhu, T.; Zhu, Y. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires. Nano Lett. 2019, 19, 5327–5334. [Google Scholar] [CrossRef]
- Chen, L.Y.; He, M.-R.; Shin, J.; Richter, G.; Gianola, D.S. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 2015, 14, 707–713. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Zhai, Y.; Zhang, J.; Wang, X.; Zhang, Z.; Mao, S.; Han, X. Dynamic mechanisms of strengthening and softening of coherent twin boundary via dislocation pile-up and cross-slip. Mater. Res. Lett. 2022, 10, 539–546. [Google Scholar] [CrossRef]
- Legros, M. In situ mechanical TEM: Seeing and measuring under stress with electrons. Comptes Rendus Phys. 2014, 15, 224–240. [Google Scholar] [CrossRef]
- Shan, Z.W.; Mishra, R.K.; Asif, S.A.S.; Warren, O.L.; Minor, A.M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev. Sci. Instrum. 2003, 74, 4945–4947. [Google Scholar] [CrossRef]
- Nafari, A.; Danilov, A.; Rödjegård, H.; Enoksson, P.; Olin, H. A micromachined nanoindentation force sensor. Sens. Actuators A Phys. 2005, 123–124, 44–49. [Google Scholar] [CrossRef]
- Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 2014, 5, 4864–4871. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Moldovan, N.; Espinosa, H.D.J.A.P.L. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 2005, 86, 013506. [Google Scholar] [CrossRef]
- Li, C.; Cheng, G.; Wang, H.; Zhu, Y. Microelectromechanical Systems for Nanomechanical Testing: Displacement- and Force-Controlled Tensile Testing with Feedback Control. Exp. Mech. 2020, 60, 1005–1015. [Google Scholar] [CrossRef]
- Hosseinian, E.; Pierron, O.N.J.N. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 2013, 5, 12532–12541. [Google Scholar] [CrossRef]
- Pant, B.; Allen, B.L.; Zhu, T.; Gall, K.; Pierron, O.N. A versatile microelectromechanical system for nanomechanical testing. Appl. Phys. Lett. 2011, 98, 053506. [Google Scholar] [CrossRef]
- Lu, S.; Guo, Z.; Ding, W.; Dikin, D.A.; Lee, J.; Ruoff, R.S. In situ mechanical testing of templated carbon nanotubes. Rev. Sci. Instrum. 2006, 77, 125101. [Google Scholar] [CrossRef]
- Kumar, S.; Haque, M.A.; Gao, H. Notch insensitive fracture in nanoscale thin films. Appl. Phys. Lett. 2009, 94, 253104. [Google Scholar] [CrossRef]
- Izadi, E.; Darbal, A.; Sarkar, R.; Rajagopalan, J. Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping. Mater. Des. 2017, 113, 186–194. [Google Scholar] [CrossRef]
- Haque, M.A.; Saif, M.T.A. Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A Phys. 2002, 97–98, 239–245. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Zhang, X.; Zeng, H.; Jin, Q. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip. J. Semicond. 2014, 35, 081001. [Google Scholar] [CrossRef]
- Wang, B.; Haque, M.A. In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures. JOM 2015, 67, 1713–1720. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, P.; Zhang, Z.; Han, X.; Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011, 11, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Teng, J.; Liu, P.; Hirata, A.; Ma, E.; Zhang, Z.; Chen, M.; Han, X. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 2014, 5, 4402. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, X.; Liu, P.; Yue, Y.; Zhang, Z.; Ma, E. In Situ Observation of Dislocation Behavior in Nanometer Grains. Phys. Rev. Lett. 2010, 105, 135501. [Google Scholar] [CrossRef] [PubMed]
- Ramachandramoorthy, R.; Milan, M.; Lin, Z.; Trolier-McKinstry, S.; Corigliano, A.; Espinosa, H. Design of piezoMEMS for high strain rate nanomechanical experiments. Extrem. Mech. Lett. 2018, 20, 14–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, Y.; Huang, J.; Jin, T.; Nie, A.; Wang, H.; Tian, Y. Atomic-scale observation of the deformation and failure of diamonds by in-situ double-tilt mechanical testing transmission electron microscope holder. Sci. China Mater. 2020, 63, 2335–2343. [Google Scholar] [CrossRef]
- Xu, M.; Dai, S.; Blum, T.; Li, L.; Pan, X. Double-tilt in situ TEM holder with ultra-high stability. Ultramicroscopy 2018, 192, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D. Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach. Micron 2017, 94, 66–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, X.; Li, Z.; Cai, J.; Zhang, J.; Han, X. Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions. Micromachines 2023, 14, 1708. https://doi.org/10.3390/mi14091708
Zhang J, Yang X, Li Z, Cai J, Zhang J, Han X. Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions. Micromachines. 2023; 14(9):1708. https://doi.org/10.3390/mi14091708
Chicago/Turabian StyleZhang, Jiabao, Xudong Yang, Zhipeng Li, Jixiang Cai, Jianfei Zhang, and Xiaodong Han. 2023. "Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions" Micromachines 14, no. 9: 1708. https://doi.org/10.3390/mi14091708
APA StyleZhang, J., Yang, X., Li, Z., Cai, J., Zhang, J., & Han, X. (2023). Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions. Micromachines, 14(9), 1708. https://doi.org/10.3390/mi14091708