Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Sonication Device
2.3. Exfoliation Mechanism
2.4. Acoustic Streaming Simulation Mechanism and Methods
2.5. Particle Tracing Experiment Mechanism and Method
2.6. Exfoliation Method and Characterization Process
3. Results and Discussions
3.1. Streaming
3.2. SEM Observation
3.3. Raman Spectroscopy
3.4. Discussion
4. Conclusions
- (1)
- By coupling a low-cost buzzer and microcapillary using UV curing glue and applying a low-consumption electric signal, a promising simple yet effective sonication device was developed.
- (2)
- Acoustic streaming simulations and particle tracing experiments were conducted by immersing the capillary tip in the liquid, revealing significant acoustic streaming generated near the capillary tip, which increased with the intensity of the acoustic waves.
- (3)
- Additionally, at 18.1 kHz, cavitation phenomena were observed in the liquid chamber, characterized by the generation of microbubbles that followed the streaming. These phenomena induced shear force and cavitation, and are considered to be the key mechanisms underlying the sonication-assisted graphene exfoliation process.
- (4)
- Sonication-assisted LPE was conducted for 9 h using DMF + NaOH, and the resulting sheets were subjected to analysis using various characterization techniques. SEM and Raman results revealed the production of 100 nm graphene sheets with a thin thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar]
- Novoselov, K.S.; Fal′Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar]
- Ratnikov, P.V.; Silin, A.P. Two-dimensional graphene electronics: Current status and prospects. Phys. Uspekhi 2018, 61, 1139. [Google Scholar]
- Li, Y.; Yang, J.; Song, J. Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle. Renew. Sustain. Energy Rev. 2016, 69, 652–663. [Google Scholar]
- Garg, M.; Pamme, N. Microfluidic (bio)-sensors based on 2-D layered materials. TrAC Trends Anal. Chem. 2023, 158, 116839. [Google Scholar]
- Wang, B.; Sun, Q.; Liu, S.; Li, Y. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting. Int. J. Hydrogen Energy 2013, 38, 7232–7240. [Google Scholar]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar]
- Yang, W.; Chen, G.; Shi, Z.; Liu, C.-C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797. [Google Scholar] [PubMed]
- Qian, M.; Zhou, Y.S.; Gao, Y.; Feng, T.; Sun, Z.; Jiang, L.; Lu, Y.F. Production of few-layer graphene through liquid-phase pulsed laser exfoliation of highly ordered pyrolytic graphite. Appl. Surf. Sci. 2012, 258, 9092–9095. [Google Scholar]
- Asif, M.; Tan, Y.; Pan, L.; Li, J.; Rashad, M.; Usman, M. Thickness Controlled Water Vapors Assisted Growth of Multilayer Graphene by Ambient Pressure Chemical Vapor Deposition. J. Phys. Chem. C 2015, 119, 3079–3089. [Google Scholar]
- Wan, Y.; Chen, L.; Tang, W.; Li, J. Effect of graphene on tribological properties of Ni based composite coatings prepared by oxidation reduction method. J. Mater. Res. Technol. 2020, 9, 3796–3804. [Google Scholar]
- Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials 2018, 8, 942. [Google Scholar]
- Bari, R.; Parviz, D.; Khabaz, F.; Klaassen, C.D.; Metzler, S.D.; Hansen, M.J.; Khare, R.; Green, M.J. Liquid phase exfoliation and crumpling of inorganic nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9383–9393. [Google Scholar]
- Liu, Y.; Li, R. Study on ultrasound-assisted liquid-phase exfoliation for preparing graphene-like molybdenum disulfide nanosheets. Ultrason. Sonochem. 2019, 63, 104923. [Google Scholar]
- Alaferdov, A.; Gholamipour-Shirazi, A.; Canesqui, M.; Danilov, Y.; Moshkalev, S. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 2013, 69, 525–535. [Google Scholar]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar]
- Ng, K.L.; Maciejewska, B.M.; Qin, L.; Johnston, C.; Barrio, J.; Titirici, M.-M.; Tzanakis, I.; Eskin, D.G.; Porfyrakis, K.; Mi, J.; et al. Direct Evidence of the Exfoliation Efficiency and Graphene Dispersibility of Green Solvents toward Sustainable Graphene Production. ACS Sustain. Chem. Eng. 2022, 11, 58–66. [Google Scholar]
- Ciesielski, A.; Samori, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar]
- Smith, R.J.; King, P.J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G.S.; Grunlan, J.C.; Moriarty, G.; et al. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Adv. Mater. 2011, 23, 3944–3948. [Google Scholar]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Hao, R.; Hou, Y.; Tian, Y.; Shen, C.; Gao, H.; Liang, X. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712. [Google Scholar] [CrossRef]
- Liu, W.; Tanna, V.A.; Yavitt, B.M.; Dimitrakopoulos, C.; Winter, H.H. Fast Production of High-Quality Graphene via Sequential Liquid Exfoliation. ACS Appl. Mater. Interfaces 2015, 7, 27027–27030. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.A.; Kaur, A.; Khavari, M.; Tyurnina, A.V.; Priyadarshi, A.; Eskin, D.G.; Mi, J.; Porfyrakis, K.; Prentice, P.; Tzanakis, I. An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions. Carbon 2023, 204, 434–446. [Google Scholar] [CrossRef]
- Sethurajaperumal, A.; Varrla, E. High-Quality and Efficient Liquid-Phase Exfoliation of Few-Layered Graphene by Natural Surfactant. ACS Sustain. Chem. Eng. 2022, 10, 14746–14760. [Google Scholar] [CrossRef]
- Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang, X.; Yang, Y.; Ye, M.; Vajtai, R.; Lou, J.; et al. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Lett. 2015, 15, 5449–5454. [Google Scholar] [CrossRef]
- Arao, Y.; Kubouchi, M. High-rate production of few-layer graphene by high-power probe sonication. Carbon 2015, 95, 802–808. [Google Scholar] [CrossRef]
- Jafarpour, M.; Aghdam, A.S.; Gevari, M.T.; Koşar, A.; Bayazıt, M.K.; Ghorbani, M. An ecologically friendly process for graphene exfoliation based on the “hydrodynamic cavitation on a chip” concept. RSC Adv. 2021, 11, 17965–17975. [Google Scholar] [CrossRef]
- Ahmed, H.; Rezk, A.R.; Carey, B.J.; Wang, Y.; Mohiuddin, M.; Berean, K.J.; Russo, S.P.; Kalantar-Zadeh, K.; Yeo, L.Y. Ultrafast Acoustofluidic Exfoliation of Stratified Crystals. Adv. Mater. 2018, 30, e1704756. [Google Scholar] [CrossRef]
- Choi, C.-H.; Kwak, Y.; Malhotra, R.; Chang, C.-H. Microfluidics for Two-Dimensional Nanosheets: A Mini Review. Processes 2020, 8, 1067. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Chen, T.; Gao, X.-F.; Liu, H.-H.; Zhang, X.-X. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization. Mater. Express 2017, 7, 491–499. [Google Scholar] [CrossRef]
- Qiu, X.; Bouchiat, V.; Colombet, D.; Ayela, F. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip’. RSC Adv. 2019, 9, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Shafaghi, A.H.; Talabazar, F.R.; Zuvin, M.; Gevari, M.T.; Villanueva, L.G.; Ghorbani, M.; Koşar, A. On cavitation inception and cavitating flow patterns in a multi-orifice microfluidic device with a functional surface. Phys. Fluids 2021, 33, 032005. [Google Scholar] [CrossRef]
- Hao, N.; Liu, P.; Bachman, H.; Pei, Z.; Zhang, P.; Rufo, J.; Wang, Z.; Zhao, S.; Huang, T.J. Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS Nano 2020, 14, 6150–6163. [Google Scholar] [CrossRef]
- Zhao, S.; He, W.; Ma, Z.; Liu, P.; Huang, P.-H.; Bachman, H.; Wang, L.; Yang, S.; Tian, Z.; Wang, Z.; et al. On-chip stool liquefaction via acoustofluidics. Lab Chip 2019, 19, 941–947. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, Q.; Luo, Y.; Huang, Z.; Cheng, Q.; Zhang, W.; Zhou, B.; Zhou, Y.; Ma, Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. Ultrason. Sonochemistry 2023, 96, 106441. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Ma, Z.; Yang, J.K.W.; Ai, Y. Acoustic Vibration-Induced Actuation of Multiple Microrotors in Microfluidics. Adv. Mater. Technol. 2020, 5, 2000323. [Google Scholar] [CrossRef]
- Athanassiadis, A.G.; Ma, Z.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem. Rev. 2021, 122, 5165–5208. [Google Scholar] [CrossRef]
- Durrer, J.; Agrawal, P.; Ozgul, A.; Neuhauss, S.C.F.; Nama, N.; Ahmed, D. A robot-assisted acoustofluidic end effector. Nat. Commun. 2022, 13, 6370. [Google Scholar] [CrossRef]
- Güler, Ö.; Tekeli, M.; Taşkın, M.; Güler, S.H.; Yahia, I. The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling liquid media: The effect of liquid media on yield and optimization. Ceram. Int. 2020, 47, 521–533. [Google Scholar] [CrossRef]
- Liu, W.W.; Wang, J.N. Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 2011, 47, 6888–6890. [Google Scholar] [CrossRef] [PubMed]
- Telkhozhayeva, M.; Teblum, E.; Konar, R.; Girshevitz, O.; Perelshtein, I.; Aviv, H.; Tischler, Y.R.; Nessim, G.D. Higher Ultrasonic Frequency Liquid Phase Exfoliation Leads to Larger and Monolayer to Few-Layer Flakes of 2D Layered Materials. Langmuir 2021, 37, 4504–4514. [Google Scholar] [CrossRef] [PubMed]
- Han, J.T.; Jang, J.I.; Kim, H.; Hwang, J.Y.; Yoo, H.K.; Woo, J.S.; Choi, S.; Kim, H.Y.; Jeong, H.J.; Jeong, S.Y.; et al. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation. Sci. Rep. 2014, 4, 5133. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 2012, 12, 4617–4627. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Shimada, T.; Sugai, T.; Fantini, C.; Souza, M.; Cançado, L.; Jorio, A.; Pimenta, M.; Saito, R.; Grüneis, A.; Dresselhaus, G.; et al. Origin of the 2450 cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon 2005, 43, 1049–1054. [Google Scholar] [CrossRef]
Device | Exfoliation Principle | Power Consumption | Graphene Qualification | Cost/Fabrication Process |
---|---|---|---|---|
Sonication bath [17,23] | Shear force and cavitation | High | Good | High |
Sonication probe [24,25,26,27] | Shear force and cavitation | High | Good | High |
Microfluidizer [31] | Shear force | Low | Good | High |
Microfluidic chip [29,32] | Shear force | Low | Good | High/complex |
Capillary effector (This study) | Shear force and cavitation | Low | 100 nm sheets | Low/easy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wen, Z.; Huang, Z.; Wang, Y.; Chen, Z.; Lai, S.; Chen, S.; Zhou, Y. Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector. Micromachines 2023, 14, 1718. https://doi.org/10.3390/mi14091718
Liu Y, Wen Z, Huang Z, Wang Y, Chen Z, Lai S, Chen S, Zhou Y. Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector. Micromachines. 2023; 14(9):1718. https://doi.org/10.3390/mi14091718
Chicago/Turabian StyleLiu, Yu, Zhaorui Wen, Ziyu Huang, Yuxin Wang, Zhiren Chen, Shen Lai, Shi Chen, and Yinning Zhou. 2023. "Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector" Micromachines 14, no. 9: 1718. https://doi.org/10.3390/mi14091718
APA StyleLiu, Y., Wen, Z., Huang, Z., Wang, Y., Chen, Z., Lai, S., Chen, S., & Zhou, Y. (2023). Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector. Micromachines, 14(9), 1718. https://doi.org/10.3390/mi14091718