Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
Abstract
:1. Introduction
2. Principle of Operation
3. Materials and Methodology
4. Results and Discussions
4.1. Model Validation
4.2. Parametric FEA Analysis of Thin Diaphragms/Plates
4.3. Harmonic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weigold, J.W.; Brosnihan, T.J.; Bergeron, J.; Zhang, X. A MEMS condenser microphone for consumer applications. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Istanbul, Turkey, 22–26 January 2006; Volume 2006, pp. 86–89. [Google Scholar] [CrossRef]
- Tiete, J.; Domínguez, F.; da Silva, B.; Touhafi, A.; Steenhaut, K. MEMS microphones for wireless applications. In Wireless MEMS Networks and Applications; Woodhead Publishing: Soston, UK, 2017; pp. 177–195. [Google Scholar] [CrossRef]
- Mallik, S.; Chowdhury, D.; Chttopadhyay, M. Development and performance analysis of a low-cost MEMS microphone-based hearing aid with three different audio amplifiers. Innov. Syst. Softw. Eng. 2019, 15, 17–25. [Google Scholar] [CrossRef]
- Zargarpour, N.; Zarifi, M.H. A piezoelectric micro-electromechanical microphone for implantable hearing aid applications. Microsyst. Technol. 2015, 21, 893–902. [Google Scholar] [CrossRef]
- Zinserling, B. Silicon-based MEMS Microphone For Automotive Applications. MicroNano News 2007, 8–11. Available online: http://www.onboard-technology.com/pdf_febbraio2007/020705.pdf (accessed on 28 August 2023).
- Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, W.; Bergveld, P. A review of silicon microphones. Sens. Actuators A Phys. 1994, 44, 1–11. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. A review of MEMS capacitive microphones. Micromachines 2020, 11, 484. [Google Scholar] [CrossRef]
- Minervini, A.D. Method of Manufacturing a Microphone. U.S. Patent 7,434,305, 14 October 2008. [Google Scholar]
- Mallik, S.; Chowdhury, D.; Chttopadhyay, M. Development of a Power Efficient Hearing Aid Using MEMS Microphone. In Proceedings of the Social Transformation–Digital Way: 52nd Annual Convention of the Computer Society of India, CSI 2017, Kolkata, India, 19–21 January 2018; Revised Selected Papers. Springer: Singapore, 2018; pp. 369–375. [Google Scholar] [CrossRef]
- Pinjare, S.L.; Veda, S.N.; Saurabh, K.S.; Roshan, K.R.; Sagar, M.S. A MEMS condenser microphone for consumer applications. In Proceedings of the COMSOL Conference, Bangalore, India, 4-5 November 2011; pp. 1–5. [Google Scholar]
- Barlian, A.A.; Park, W.-T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Calero, D.; Paul, S.; Gesing, A.; Alves, F.; Cordioli, J.A. A technical review and evaluation of implantable sensors for hearing devices. BioMed. Eng. Online 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Van Heeren, H.; Salomon, P. MEMS—Recent Developments, Future Directions. In Wolfson School of Mechanical and Manufacturing Engineering; Loughborough University: Loughborough, UK, 2007; Volume 5, pp. 1–51. [Google Scholar]
- Chan, C.K.; Lai, W.C.; Wu, M.; Wang, M.Y.; Fang, W. Design and implementation of a capacitive-type microphone with rigid diaphragm and flexible spring using the two poly silicon micromachining processes. IEEE Sensors J. 2011, 11, 2365–2371. [Google Scholar] [CrossRef]
- Malcovati, P.; Baschirotto, A. The evolution of integrated interfaces for MEMS microphones. Micromachines 2018, 9, 323. [Google Scholar] [CrossRef]
- Yasuno, Y.; Ohga, J. Temperature characteristics of electret condenser microphones. Acoust. Sci. Technol. 2006, 27, 216–224. [Google Scholar] [CrossRef]
- Belwanshi, V.; Topkar, A. Quantitative analysis of temperature effect on SOI piezoresistive pressure sensors. Microsyst. Technol. 2017, 23, 2719–2725. [Google Scholar] [CrossRef]
- Belwanshi, V.; Topkar, A. Quantitative Analysis of MEMS Piezoresistive Pressure Sensors Based on Wide Band Gap Materials. IETE J. Res. 2019, 68, 667–677. [Google Scholar] [CrossRef]
- Belwanshi, V. Analytical modeling to estimate the sensitivity of MEMS technology-based piezoresistive pressure sensor. J. Comput. Electron. 2021, 20, 668–680. [Google Scholar] [CrossRef]
- Petersen, K.E. Silicon as a Mechanical Material. Proc. IEEE 1982, 70, 420–457. [Google Scholar] [CrossRef]
- Eaton, W.P.; Smith, J.H. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct. 1997, 6, 530. [Google Scholar] [CrossRef]
- Shah, M.A.; Shah, I.A.; Lee, D.G.; Hur, S. Design approaches of MEMS microphones for enhanced performance. J. Sens. 2019, 2019, 9294528. [Google Scholar] [CrossRef]
- Duvigneau, F.; Koch, S.; Orszulik, R.; Woschke, E.; Gabbert, U. About the vibration modes of square plate-like structures. Tech. Mech. 2016, 36, 180–189. [Google Scholar] [CrossRef]
- Mohamad, N.; Iovenitti, P.; Vinay, T. Effective diaphragm area of spring-supported capacitive MEMS microphone designs. Smart Struct. Devices Syst. IV 2008, 7268, 726805. [Google Scholar] [CrossRef]
- Guguloth, G.N.; Singh, B.N.; Ranjan, V. Free vibration analysis of simply supported rectangular plates. Vibroeng. Procedia 2019, 29, 270–273. [Google Scholar] [CrossRef]
- Senjanović, I.; Tomić, M.; Vladimir, N.; Cho, D.S. Analytical solution for free vibrations of a moderately thick rectangular plate. Math. Probl. Eng. 2013, 2013, 207460. [Google Scholar] [CrossRef]
- Gibbons, C.; Miles, R.N. Design of a biomimetic directional microphone diaphragm. Am. Soc. Mech. Eng. Noise Control Acoust. Div. (Publ.) NCA 2000, 19098, 173–179. [Google Scholar] [CrossRef]
- Wang, W.J.; Lin, R.M.; Ren, Y. Design and fabrication of silicon condenser microphone using single deeply corrugated diaphragm technique. Microelectron. Int. 2003, 20, 36–40. [Google Scholar] [CrossRef]
- Menezes, J.; Kiran, K.; Schmitz, T.L. Analytical model for thin plate dynamics. In Proceedings of the ASPE 2015 Annual Meeting, Austin, TX, USA, 1–6 November 2015; pp. 571–576. [Google Scholar]
- Umale, S.; Shinde, D.S. Static And Modal Analysis of Simply Supported Rectangular Plate By Using ANSYS. Kalpa Publ. Civ. Eng. 2018, 1, 315–320. [Google Scholar] [CrossRef]
- Shahdadi, A.H.; Hajabasi, M.A. An analytical solution for free vibration analysis of circular plates in axisymmetric modes based on the two variables refined plate theory. J. Mech. Sci. Technol. 2014, 28, 3449–3458. [Google Scholar] [CrossRef]
- Torio, G.; Segota, J. Unique Directional Properties of Dual-Diaphragm Microphones. Audio Eng. Soc. 2000, 109, 5179. [Google Scholar]
- Wu, J.H.; Liu, A.Q.; Chen, H.L. Exact solutions for free-vibration analysis of rectangular plates using Bessel functions. J. Appl. Mech. Trans. ASME 2007, 74, 1247–1251. [Google Scholar] [CrossRef]
- Nkounhawa, P.K.; Ndapeu, D.; Kenmeugne, B.; Beda, T. Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys. World J. Mech. 2020, 10, 11–25. [Google Scholar] [CrossRef]
- Loeppert, P.V.; Lee, S.B. SIS0NIC—The First Commercialized Mems Microphone; Knowles Electronics, LLC: Itasca, IL, USA, 2021; pp. 27–30. [Google Scholar] [CrossRef]
- Martin, D.T.; Liu, J.; Kadirvel, K.; Fox, R.M.; Sheplak, M.; Nishida, T. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J. Microelectromechanical Syst. 2007, 16, 1289–1302. [Google Scholar] [CrossRef]
- Kabir, A.E.; Bashir, R.; Bernstein, J.; De Santis, J.; Mathews, R.; O’Boyle, J.O.; Bracken, C. High sensitivity acoustic transducers with thin p q membranes and gold back-plate. Sens. Actuators A Phys. 1999, 78, 138–142. [Google Scholar] [CrossRef]
- Hsu, P.C.; Mastrangelo, C.H.; Wise, K.D. High sensitivity polysilicon diaphragm condenser microphone. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Heidelberg, Germany, 25–29 January 1998; pp. 580–585. [Google Scholar] [CrossRef]
- Bergqvlst, J.; Rudolf, F. A New Co&mm Microphone in Siticon. Sens. Actuators A Phys. 1990, 21, 123–125. [Google Scholar]
- Bergqvist, J.; Gobet, J. Capacitive Microphone with a Surface Micromachined Backplate Using Electroplating Technology. J. Microelectromechanical Syst. 1994, 3, 69–75. [Google Scholar] [CrossRef]
- Gemelli, A.; Tambussi, M.; Fusetto, S.; Aprile, A.; Moisello, E.; Bonizzoni, E.; Malcovati, P. Recent Trends in Structures and Interfaces of MEMS Transducers for Audio Applications: A Review. Micromachines 2023, 14, 847. [Google Scholar] [CrossRef] [PubMed]
- Bao, M. Analysis and Design Principles of MEMS Devices; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]
Materials | Stiffness Coefficient/Young’s Modulus at 25 °C (GPa) | Poisson’s Ratio | |
---|---|---|---|
Anisotropic Silicon | c11 | 165.64 | 0.27 |
c12 | 63.94 | ||
c44 | 79.51 | ||
Isotropic Silicon | 169 |
Parameters | Analytical Model | FEA Isotropic | FEA Anisotropic | % Change Isotropic | % Change Anisotropic |
---|---|---|---|---|---|
Deflection sensitivity (µm/Pa) | 1.11 × 10−4 | 1.07 × 10−4 | 9.66 × 10−5 | −3.48 | −12.81 |
Stress sensitivity (MPa/Pa) | 2.50 × 10−3 | 2.56 × 10−3 | 2.83 × 10−3 | 2.27 | 13.01 |
Critical Ratio | Deflection Coefficient d/h = coeff × (a/h)4 | Induced Stresses Coefficient Stress = coeff × (a/h)2 | Natural Frequencies f × h = coeff × (a/h)−2 | |
---|---|---|---|---|
Square (coeffsq) | 570 | 1.90 × 10−12 | 5.45 × 10−6 | 1.12 × 1010 |
Circular (coeffci) | 605 | 1.50 × 10−12 | 3.21 × 10−6 | 1.45 × 1010 |
Critical ratio | Thickness (µm) | Edge or Radius (µm) | Deflection Sensitivity (µm/Pa) | Stress Sensitivity (MPa/Pa) | Frequency (kHz) | |
---|---|---|---|---|---|---|
Square | 570 | 2.5 | 1425 | 0.025 | 0.105 | 17.24 |
Circular | 605 | 2.5 | 756.25 | 0.025 | 0.076 | 17.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belwanshi, V.; Rane, K.; Kumar, V.; Pramanick, B. Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines 2023, 14, 1725. https://doi.org/10.3390/mi14091725
Belwanshi V, Rane K, Kumar V, Pramanick B. Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines. 2023; 14(9):1725. https://doi.org/10.3390/mi14091725
Chicago/Turabian StyleBelwanshi, Vinod, Kedarnath Rane, Vibhor Kumar, and Bidhan Pramanick. 2023. "Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies" Micromachines 14, no. 9: 1725. https://doi.org/10.3390/mi14091725
APA StyleBelwanshi, V., Rane, K., Kumar, V., & Pramanick, B. (2023). Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines, 14(9), 1725. https://doi.org/10.3390/mi14091725