Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Texturing
2.3. Surface Characterization
2.4. Heat Transfer
3. Results and Discussion
3.1. Laser Texturing
3.2. Heat Transfer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Influence of Temperature on Integrated Circuit Failure Mechanisms. In High-Temperature Electronics; IEEE: Piscataway, NJ, USA, 2009; ISBN 978-0-470-54488-4.
- You, Y.; Zhang, B.; Tao, S.; Liang, Z.; Tang, B.; Zhou, R.; Yuan, D. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices. Micromachines 2021, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Oguntala, G.; Abd-Alhameed, R.; Sobamowo, G.; Abdullahi, H.-S. Improved Thermal Management of Computer Microprocessors Using Cylindrical-Coordinate Micro-Fin Heat Sink with Artificial Surface Roughness. Eng. Sci. Technol. Int. J. 2018, 21, 736–744. [Google Scholar] [CrossRef]
- Attar, M.R.; Mohammadi, M.; Taheri, A.; Hosseinpour, S.; Passandideh-Fard, M.; Haddad Sabzevar, M.; Davoodi, A. Heat Transfer Enhancement of Conventional Aluminum Heat Sinks with an Innovative, Cost-Effective, and Simple Chemical Roughening Method. Therm. Sci. Eng. Prog. 2020, 20, 100742. [Google Scholar] [CrossRef]
- Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P. Heat Transfer Enhancement by Finned Heat Sinks with Micro-Structured Roughness. J. Phys.: Conf. Ser. 2014, 494, 012009. [Google Scholar] [CrossRef]
- Zhan, Z.; ElKabbash, M.; Li, Z.; Li, X.; Zhang, J.; Rutledge, J.; Singh, S.; Guo, C. Enhancing Thermoelectric Output Power via Radiative Cooling with Nanoporous Alumina. Nano Energy 2019, 65, 104060. [Google Scholar] [CrossRef]
- Brandner, J.J.; Anurjew, E.; Bohn, L.; Hansjosten, E.; Henning, T.; Schygulla, U.; Wenka, A.; Schubert, K. Concepts and Realization of Microstructure Heat Exchangers for Enhanced Heat Transfer. Exp. Therm. Fluid Sci. 2006, 30, 801–809. [Google Scholar] [CrossRef]
- Kruse, C.; Anderson, T.; Wilson, C.; Zuhlke, C.; Alexander, D.; Gogos, G.; Ndao, S. Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces. Int. J. Heat Mass Transf. 2015, 82, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Serdyukov, V.; Starinskiy, S.; Malakhov, I.; Safonov, A.; Surtaev, A. Laser Texturing of Silicon Surface to Enhance Nucleate Pool Boiling Heat Transfer. Appl. Therm. Eng. 2021, 194, 117102. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Coulombe, S.; Kietzig, A.M. Boiling Heat Transfer Enhancement with Stable Nanofluids and Laser Textured Copper Surfaces. Int. J. Heat Mass Transf. 2018, 126, 287–296. [Google Scholar] [CrossRef]
- Udaya Kumar, G.; Suresh, S.; Sujith Kumar, C.S.; Back, S.; Kang, B.; Lee, H.J. A Review on the Role of Laser Textured Surfaces on Boiling Heat Transfer. Appl. Therm. Eng. 2020, 174, 115274. [Google Scholar] [CrossRef]
- Zupančič, M.; Može, M.; Gregorčič, P.; Golobič, I. Nanosecond Laser Texturing of Uniformly and Non-Uniformly Wettable Micro Structured Metal Surfaces for Enhanced Boiling Heat Transfer. Appl. Surf. Sci. 2017, 399, 480–490. [Google Scholar] [CrossRef]
- Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P. Rough Surfaces with Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering. Int. J. Heat Mass Transf. 2014, 75, 58–74. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Makin, V.S.; Guo, C. Brighter Light Sources from Black Metal: Significant Increase in Emission Efficiency of Incandescent Light Sources. Phys. Rev. Lett. 2009, 102, 234301. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.Y.; Vorobyev, A.Y.; Guo, C. Enhanced Efficiency of Solar-Driven Thermoelectric Generator with Femtosecond Laser-Textured Metals. Opt. Express 2011, 19, A824. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.A.; ElKabbash, M.; Zhang, J.; Singh, S.; Zhan, Z.; Guo, C. Multipronged Heat-Exchanger Based on Femtosecond Laser-Nano/Microstructured Aluminum for Thermoelectric Heat Scavengers. Nano Energy 2020, 75, 104987. [Google Scholar] [CrossRef] [PubMed]
- Lang, V.; Roch, T.; Lasagni, A.F. World Record in High Speed Laser Surface Microstructuring of Polymer and Steel Using Direct Laser Interference Patterning; Klotzbach, U., Washio, K., Arnold, C.B., Eds.; SPIE LASE: San Francisco, CA, USA, 2016; p. 97360Z. [Google Scholar]
- Ränke, F.; Baumann, R.; Voisiat, B.; Fabián Lasagni, A. High Throughput Laser Surface Micro-Structuring of Polystyrene by Combining Direct Laser Interference Patterning with Polygon Scanner Technology. Mater. Lett. X 2022, 14, 100144. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zhang, Z.; Yue, Y.; Li, D.; Maple, C. Effects of Polarization on Four-Beam Laser Interference Lithography. Appl. Phys. Lett. 2013, 102, 081903. [Google Scholar] [CrossRef]
- Fernandez, A.; Phillion, D.W. Effects of Phase Shifts on Four-Beam Interference Patterns. Appl. Opt. 1998, 37, 473. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982, 7, 196. [Google Scholar] [CrossRef] [PubMed]
- DIN ISO 25178-2:2012-09; Geometrical Product Specifications (GPS)—Surface Texture: Areal. Part 2: Terms, Definitions and Surface Texture Parameters; Beuth: Berlin, Germany, 2012.
- Reicks, A.; Tsubaki, A.; Anderson, M.; Wieseler, J.; Khorashad, L.K.; Shield, J.E.; Gogos, G.; Alexander, D.; Argyropoulos, C.; Zuhlke, C. Near-Unity Broadband Omnidirectional Emissivity via Femtosecond Laser Surface Processing. Commun. Mater. 2021, 2, 36. [Google Scholar] [CrossRef]
Texture | Label | Fluence A (J/cm2) | Fluence B (J/cm2) | Pulses | Hatch Distance (µm) |
---|---|---|---|---|---|
Channels | C1 | 1.14 | - | 3 | 34 |
Channels | C2 | 1.24 | - | 7 | 34 |
Channels | C3 | 1.35 | - | 11 | 34 |
Channels | C4 | 1.44 | - | 15 | 34 |
Channels | C5 | 1.53 | - | 19 | 34 |
Channels | C6 | 1.60 | - | 23 | 34 |
Pillars | P1 | 1.14 | 1.04 | 3 | 34 |
Pillars | P2 | 1.24 | 1.07 | 7 | 34 |
Pillars | P3 | 1.35 | 1.17 | 11 | 34 |
Pillars | P4 | 1.44 | 1.21 | 15 | 34 |
Pillars | P5 | 1.53 | 1.28 | 19 | 34 |
Pillars | P6 | 1.60 | 1.04 | 23 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schell, F.; Chukwudi Okafor, R.; Steege, T.; Alamri, S.; Ghevariya, S.; Zwahr, C.; Lasagni, A.F. Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks. Micromachines 2023, 14, 1730. https://doi.org/10.3390/mi14091730
Schell F, Chukwudi Okafor R, Steege T, Alamri S, Ghevariya S, Zwahr C, Lasagni AF. Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks. Micromachines. 2023; 14(9):1730. https://doi.org/10.3390/mi14091730
Chicago/Turabian StyleSchell, Frederic, Richard Chukwudi Okafor, Tobias Steege, Sabri Alamri, Savan Ghevariya, Christoph Zwahr, and Andrés F. Lasagni. 2023. "Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks" Micromachines 14, no. 9: 1730. https://doi.org/10.3390/mi14091730
APA StyleSchell, F., Chukwudi Okafor, R., Steege, T., Alamri, S., Ghevariya, S., Zwahr, C., & Lasagni, A. F. (2023). Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks. Micromachines, 14(9), 1730. https://doi.org/10.3390/mi14091730